Get access
Advertisement

An algebraic approach to the collinear collision N2 + N2 in the semiclassical approximation

Authors

  • R. D. Santiago,

    1. Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510 México, DF, Mexico
    Search for more papers by this author
  • O. Álvarez-Bajo,

    1. Departamento de Física Aplicada, Facultad de Ciencias Experimentales, Universidad de Huelva, Campus del Carmen, Avenida de las Fuerzas Armadas, s/n 21071, Huelva, Spain
    Search for more papers by this author
  • J. M. Arias,

    1. Departamento de Física Atómica, Molecular y Nuclear, Facultad de Física, Universidad de Sevilla, Apartado 1065, 41080 Sevilla, Spain
    Search for more papers by this author
  • J. Gómez-Camacho,

    1. Departamento de Física Atómica, Molecular y Nuclear, Facultad de Física, Universidad de Sevilla, Apartado 1065, 41080 Sevilla, Spain
    Search for more papers by this author
  • R. Lemus

    Corresponding author
    1. Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510 México, DF, Mexico
    • Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510 México, DF, Mexico
    Search for more papers by this author

Abstract

An algebraic model to describe the collinear inelastic collision N2 + N2 in the semiclassical approximation is presented. The interactions for the diatomic systems are modeled in terms of Morse potentials, whereas an exponential function is taken for the interactions between the nearest atoms of the diatomic systems. This problem is treated in the interaction picture, where an approximation of the interaction potential in terms of the generators of three SU(2) groups is proposed, two corresponding to the Morse oscillators and the third one to the interaction. The transition probabilities are given in terms of a sum of products of three Wigner's d(β) functions corresponding to the three SU(2) groups. Our results are compared with exact quantum mechanical calculations. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2012

Get access to the full text of this article

Ancillary