The Importance of the DFT method on the computation of the second hyperpolarizability of semiconductor clusters of increasing size: A critical analysis on prolate aluminum phosphide clusters

Authors

  • Panaghiotis Karamanis

    Corresponding author
    1. Groupe de Chimie Théorique et Réactivité, ECP, IPREM UMR 5254, Université de Pau et de Pays de l'Adour, Hélioparc Pau Pyrénées 2 avenue du Président Angot, 64053 PAU Cedex 09, France
    • Groupe de Chimie Théorique et Réactivité, ECP, IPREM UMR 5254, Université de Pau et de Pays de l'Adour, Hélioparc Pau Pyrénées 2 avenue du Président Angot, 64053 PAU Cedex 09, France
    Search for more papers by this author

Abstract

The importance of the density functional theory (DFT) methods on the computation of cluster hyperpolarizabilities is discussed. The performance of the conventional BLYP, BP86, BPW91, B3LYP, B3PW91, and B3P86 functionals in the computation of the second hyperpolarizability of aluminum phosphide prolate clusters up to 60 atoms is compared with the “half and half functionals” BHandH and BHandHLYP and to the long-range corrected functionals LC-(BLYP, BP86, BPW91), CAM-B3LYP, and wB97XD. The presented results demonstrate that when long-range corrections are incorporated on pure and hybrid functionals their performance is vastly affected. What is more, the obtained DFT results are compared with second-order Møller–Plesset perturbation theory (MP2) all electron calculations. It is shown that all the long-range outcomes are bracketed by the MP2 and Hatree–Fock (HF) values. The relative ordering of the obtained longitudinal hyperpolarizabilities follows strictly the trend MP2 > CAM-B3LYP > wB97XD > LC-(BLYP, BP86, BPW91) > HF. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012

Ancillary