SEARCH

SEARCH BY CITATION

Keywords:

  • resonant tunneling;
  • thermal rate constant;
  • transmission probability;
  • resonant rate constant

Abstract

A fast and robust time-independent method to calculate thermal rate constants in the deep resonant tunneling regime for scattering reactions is presented. The method is based on the calculation of the cumulative reaction probability which, once integrated, gives the thermal rate constant. We tested our method with both continuous (single and double Eckart barriers) and discontinuous first derivative potentials (single and double rectangular barriers). Our results show that the presented method is robust enough to deal with extreme resonating conditions such as multiple barrier potentials. Finally, the calculation of the thermal rate constant for double Eckart potentials with several quasi-bound states and the comparison with the time-independent log-derivative method are reported. An implementation of the method using the Mathematica Suite is included in the Supporting Information. © 2013 Wiley Periodicals, Inc.