Get access

Plasmon resonances and plasmon-induced charge transport in linear atomic chains

Authors

  • Hong Zhang,

    Corresponding author
    • College of Physical Science and Technology, Sichuan University, Chengdu 610065, China
    Search for more papers by this author
  • Haifeng Yin

    1. College of Physical Science and Technology, Sichuan University, Chengdu 610065, China
    2. College of Physics and Electronic Engineering, Kaili University, Guizhou 556011, China
    Search for more papers by this author

College of Physical Science and Technology, Sichuan University, Chengdu 610065, China. E-mail: hongzhang@scu.edu.cn

Abstract

In linear hydrogen atomic chains, plasmon resonances and plasmon-induced charge transport are studied by time-dependent density functional theory. For the large linear chain, it is a general phenomenon that, in the longitudinal excitation, there are high-energy resonances and a large low-energy resonance. The energy of the large low-energy resonance conforms to the results calculated by the classical Drude model. In order to explain the formation mechanism of the high-energy resonances, we present a simple harmonic oscillator model. This model may reasonably account for the relationship between low-energy and high-energy resonances, and has a certain degree of universality. As the interatomic distance decreases, the current shows a gradual transition from insulator to metal. The current enhancement mainly depends on the local field enhancement associated with plasmon excitation, and the enhanced electron delocalization effect as a result of the decrease of the interatomic distance. © 2013 Wiley Periodicals, Inc.

Get access to the full text of this article

Ancillary