Statistical microdynamics of extended systems in natural function spaces



An approximate numerical method of solving the Generalized Master Equation for a many-body problem is presented, with examples of its application. This method involves the construction from the full Hamiltonian (of the system plus the “bath”) of a set of unitary Langevin equations that combine deterministic microcanonical, stochastic canonical (heat bath), and stochastic nonthermal dynamics in a single time-integration scheme. If implemented in a representation that captures the essential physics and repeatedly run from a given initial condition, this method evaluates stochastic representatives from the actual fiber bundle of system worldlines that flow from the initial condition and, hence, numerically evaluates the path integral. © 1993 John Wiley & Sons, Inc.