Ground-state and some excited states of Li2 by the half-projected Hartree–Fock method

Authors


Abstract

The half-projected Hartree–Fock wave function (HPHF) is one of simplest models for introducing some electronic correlation effects. In this model, the wave function is built up with only two Slater determinants. This simple form suggests its application for the direct determination of singlet excited states. On the other hand, because the HPHF model does not mix singlet and triplet states with Ms = 0, it can be used for determining independently singlet and triplet states without any mutual contamination. In the present work, we applied this model to determine nine electronic states of the lithium molecule; one of them exhibits even the same symmetry of the fundamental one. For this purpose, the 6-311G(d) basis was used. Potential energy curves were determined and some spectroscopic constants derived. The numerical results were compared with the available experimental data, as well as with other theoretical values. © 1995 John Wiley & Sons, Inc.

Ancillary