Mass spectrometric analysis of the interactions between CP12, a chloroplast protein, and metal ions: a possible regulatory role within a PRK/GAPDH/CP12 complex

Authors

  • Arnaud Delobel,

    1. Institut de Chimie des Substances Naturelles, CNRS, 1 avenue de la terrasse, 91198 Gif/Yvette, France
    Current affiliation:
    1. Mass Spectrometry Laboratory; Department of Chemistry, University of Liège, 4000 Liège (Sart-Tilman), Belgium.
    Search for more papers by this author
  • Emmanuelle Graciet,

    1. Laboratoire Génétique et Membranes, Département Biologie Cellulaire, Institut Jacques Monod, UMR 7592 CNRS, Universités Paris VI–VII, 2 place Jussieu, 75251 Paris cedex 05, France
    Current affiliation:
    1. California Institute of Technology, Division of Biology, 147-75, 1200 East California Blvd., Pasadena, CA 91125, USA.
    Search for more papers by this author
  • Simona Andreescu,

    1. Laboratoire Génétique et Membranes, Département Biologie Cellulaire, Institut Jacques Monod, UMR 7592 CNRS, Universités Paris VI–VII, 2 place Jussieu, 75251 Paris cedex 05, France
    Search for more papers by this author
  • Brigitte Gontero,

    1. Laboratoire Génétique et Membranes, Département Biologie Cellulaire, Institut Jacques Monod, UMR 7592 CNRS, Universités Paris VI–VII, 2 place Jussieu, 75251 Paris cedex 05, France
    Search for more papers by this author
  • Frédéric Halgand,

    Corresponding author
    1. Institut de Chimie des Substances Naturelles, CNRS, 1 avenue de la terrasse, 91198 Gif/Yvette, France
    • ICSN-CNRS, 1 Av de la terrasse, 91198 Gif-sur-Yvette, France.
    Search for more papers by this author
  • Olivier Laprévote

    1. Institut de Chimie des Substances Naturelles, CNRS, 1 avenue de la terrasse, 91198 Gif/Yvette, France
    Search for more papers by this author

Abstract

The small chloroplast protein CP12 plays the role of a protein linker in the assembly process of a PRK/GAPDH/CP12 complex that is involved in CO2 assimilation in photosynthetic organisms. The redox state of CP12 regulates its role as a protein linker. Only the oxidized protein, with two disulfide bonds, is active in complex formation. Several observations indicating that CP12 might bind a metal ion led us to screen the binding of different metal ions on oxidized or reduced CP12 using non-covalent electrospray ionization mass spectrometry (ESI-MS) experiments. The oxidized protein bound specifically Cu2+ and Ni2+ (Kd of 26 ± 1 µM and 11 ± 1 µM, respectively); other cations such as Fe2+and Zn2+did not bind, while cations such as Cd2+ formed non-specific adducts to CP12. Similar results were obtained for metal ions on screening with the reduced CP12. Interestingly, the present results suggest that Cu2+ catalyzes the re-formation of the disulfide bonds of the reduced CP12, leading to recovery of the fully oxidized CP12 that is then able to bind a Cu2+ ion. Finally the high similarity between CP12 and copper chaperones from Arabidopsis thaliana, as judged by hydrophobic cluster analysis, provides additional evidence for the relevance of metal binding for the in vivo situation. The findings that CP12 is able to bind a metal ion, and that Cu2+ catalyzes the oxidation of the thiol groups of CP12, are new characteristics of this protein that may prove to be important in the regulation of the assembly process of the PRK/GAPDH/CP12 complex. Copyright © 2005 John Wiley & Sons, Ltd.

Ancillary