Get access

Improved method for isotopic and quantitative analysis of dissolved inorganic carbon in natural water samples

Authors

  • Nelly Assayag,

    Corresponding author
    1. Laboratoire de Physico-chimie des Fluides Géologiques, Institut de Physique du Globe de Paris & Université Paris 7 – UMR CNRS 7154, 2 Place Jussieu, 75251 Paris Cedex 05, France
    2. Centre de recherches sur le stockage géologique du CO2, Institut de Physique du Globe de Paris, 4 Place Jussieu, 75252 Paris Cedex 05, France
    • Laboratoire de Physico-chimie des Fluides Géologiques, Institut de Physique du Globe de Paris & Université Paris 7 – UMR CNRS 7154, 2 Place Jussieu, 75251 Paris Cedex 05, France.
    Search for more papers by this author
  • Karine Rivé,

    1. Laboratoire de Physico-chimie des Fluides Géologiques, Institut de Physique du Globe de Paris & Université Paris 7 – UMR CNRS 7154, 2 Place Jussieu, 75251 Paris Cedex 05, France
    Search for more papers by this author
  • Magali Ader,

    1. Laboratoire de Physico-chimie des Fluides Géologiques, Institut de Physique du Globe de Paris & Université Paris 7 – UMR CNRS 7154, 2 Place Jussieu, 75251 Paris Cedex 05, France
    2. Centre de recherches sur le stockage géologique du CO2, Institut de Physique du Globe de Paris, 4 Place Jussieu, 75252 Paris Cedex 05, France
    Search for more papers by this author
  • Didier Jézéquel,

    1. Laboratoire de Géochimie des Eaux, Institut de Physique du Globe de Paris & Université Paris 7 – UMR CNRS 7154, 2 Place Jussieu, 75251 Paris Cedex 05, France
    Search for more papers by this author
  • Pierre Agrinier

    1. Laboratoire de Physico-chimie des Fluides Géologiques, Institut de Physique du Globe de Paris & Université Paris 7 – UMR CNRS 7154, 2 Place Jussieu, 75251 Paris Cedex 05, France
    2. Centre de recherches sur le stockage géologique du CO2, Institut de Physique du Globe de Paris, 4 Place Jussieu, 75252 Paris Cedex 05, France
    Search for more papers by this author

Abstract

We present here an improved and reliable method for measuring the concentration of dissolved inorganic carbon (DIC) and its isotope composition (δ13CDIC) in natural water samples. Our apparatus, a gas chromatograph coupled to an isotope ratio mass spectrometer (GCIRMS), runs in a quasi-automated mode and is able to analyze about 50 water samples per day. The whole procedure (sample preparation, CO2(g)–CO2(aq) equilibration time and GCIRMS analysis) requires 2 days. It consists of injecting an aliquot of water into a H3PO4-loaded and He-flushed 12 mL glass tube. The H3PO4 reacts with the water and converts the DIC into aqueous and gaseous CO2. After a CO2(g)–CO2(aq) equilibration time of between 15 and 24 h, a portion of the headspace gas (mainly CO2+He) is introduced into the GCIRMS, to measure the carbon isotope ratio of the released CO2(g), from which the δ13CDIC is determined via a calibration procedure. For standard solutions with DIC concentrations ranging from 1 to 25 mmol · L−1 and solution volume of 1 mL (high DIC concentration samples) or 5 mL (low DIC concentration samples), δ13CDIC values are determined with a precision (1σ) better than 0.1‰. Compared with previously published headspace equilibration methods, the major improvement presented here is the development of a calibration procedure which takes the carbon isotope fractionation associated with the CO2(g)–CO2(aq) partition into account: the set of standard solutions and samples has to be prepared and analyzed with the same ‘gas/liquid’ and ‘H3PO4/water’ volume ratios. A set of natural water samples (lake, river and hydrothermal springs) was analyzed to demonstrate the utility of this new method. Copyright © 2006 John Wiley & Sons, Ltd.

Get access to the full text of this article

Ancillary