SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    F. Chiti, C. M. Dobson. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 2006, 75, 333.
  • 2
    E. Monsellier, F. Chiti. Prevention of amyloid-like aggregation as a driving force of protein evolution. EMBO Rep. 2007, 8, 737.
  • 3
    T. Eichner, S. E. Radford. A diversity of assembly mechanisms of a generic amyloid fold. Mol. Cell 2011, 43, 8.
  • 4
    S. L. McCutchen, Z. Lai, G. J. Miroy, J. W. Kelly, W. Colon. Comparison of lethal and nonlethal transthyretin variants and their relationship to amyloid disease. Biochemistry 1995, 34, 13527.
  • 5
    G. Merlini, V. Bellotti. Lysozyme: A paradigmatic molecule for the investigation of protein structure, function and misfolding. Clin. Chim. Acta 2005, 357, 168.
  • 6
    L. Kupfer, W. Hinrichs, M. H. Groschup. Prion protein misfolding. Curr. Mol. Med. 2009, 9, 826.
  • 7
    R. Raffen, L. J. Dieckman, M. Szpunar, C. Wunschl, P. R. Pokkuluri, P. Dave, P. Wilkins Stevens, X. Cai, M. Schiffer, F. J. Stevens. Physicochemical consequences of amino acid variations that contribute to fibril formation by immunoglobulin light chains. Prot. Sci. 1999, 8, 509.
  • 8
    C. M. Eakin, A. D. Miranker. From chance to frequent encounters: Origins of beta2-microglobulin fibrillogenesis. Biochim. Biophys. Acta – Proteins and Proteomics 2005, 1753, 92.
  • 9
    G. W. Platt, S. E. Radford. Glimpses of the molecular mechanisms of beta2-microglobulin fibril formation in vitro: Aggregation on a complex energy landscape. FEBS Lett. 2009, 583, 2623.
  • 10
    C. H. Trinh, D. P. Smith, A. P. Kalverda, S. E. V. Phillips, S. E. Radford. Crystal structure of monomeric human beta2-microglobulin reveals clues to its amyloidogenic properties. Proc. Natl. Acad. Sci. USA 2002, 99, 9771.
  • 11
    G. Verdone, A. Corazza, P. Viglino, F. Pettirossi, S. Giorgetti, P. Mangione, A. Andreola, M. Stoppini, V. Bellotti, G. Esposito. The solution structure of human beta2-microglobulin reveals the prodromes of its amyloid transition. Prot. Sci. 2002, 11, 487.
  • 12
    M. A. Saper, P. J. Bjorkman, D. C. Wiley. Refined structure of the human histocompatibility antigen HLA-A2 at 2.6 Å resolution. J. Mol. Biol. 1991, 219, 277.
  • 13
    J. P. Hodkinson, T. R. Jahn, S. E. Radford, A. E. Ashcroft. HDX-ESI-MS reveals enhanced conformational dynamics of the amyloidogenic protein beta2-microglobulin upon release from the MHC-1. J. Am. Soc. Mass Spectrom. 2009, 20, 278.
  • 14
    G. Esposito, S. Ricagno, A. Corazza, E. Renella, D. Gumral, M. C. Mimmi, E. Betto, C. E. Pucillo, F. Fogolari, P. Viglino, S. Raimondi, S. Giorgetti, B. Bolognesi, G. Merlini, M. Stoppini, M. Bolognesi, V. Bellotti. The controlling roles of Trp60 and Trp95 in beta2-microglobulin function, folding and amyloid aggregation properties. J. Mol. Biol. 2008, 9, 887.
  • 15
    J. Floege, M. Ketteler. Beta2-microglobulin-derived amyloidosis: an update. Kidney Int. 2001, 59, 164.
  • 16
    T. R. Jahn, M. J. Parker, S. W. Homans, S. E. Radford. Amyloid formation under physiological conditions proceeds via a native-like folding intermediate. Nat. Struct. Mol. Biol. 2006, 13, 195.
  • 17
    D. P. Smith, K. Giles, R. H. Bateman, S. E. Radford, A. E. Ashcroft. Monitoring copopulated conformational states during protein folding events using electrospray ionization-ion mobility spectrometry-mass spectrometry. J. Am. Soc. Mass Spectrom. 2007, 18, 2180.
  • 18
    V. J. McParland, N. M. Kad, A. P. Kalverda, A. Brown, P. Kirwin-Jones, M. G. Hunter, M. Sunde, S. E. Radford. Partially unfolded states of beta2-microglobulin and amyloid formation in vitro. Biochemistry 2000, 39, 8735.
  • 19
    S. L. Myers, S. Jones, T. R. Jahn, I. J. Morten, G. A. Tennent, E. W. Hewitt, S. E. Radford. A systematic study of the effect of physiological factors on beta2-microglobulin amyloid formation at neutral pH. Biochemistry 2006, 45, 2311.
  • 20
    T. R. Jahn, G. A. Tennent, S. E. Radford. A common beta-sheet architecture underlies in vitro and in vivo beta2-microglobulin amyloid fibrils. J. Biol. Chem. 2008, 283, 17279.
  • 21
    W. S. Gosal, I. J. Morten, E. W. Hewitt, D. A. Smith, N. H. Thomson, S. E. Radford. Competing pathways determine fibril morphology in the self-assembly of beta2-microglobulin into amyloid. J. Mol. Biol. 2005, 351, 850.
  • 22
    H. Naiki, N. Hashimoto, S. Suzuki, H. Kimura, K. Nakakuki, F. Gejyo, Establishment of a kinetic model of dialysis-related amyloid fibril extension in vitro. Amyloid 1997, 4, 223.
  • 23
    N. H. Heegaard, T. J. Jorgensen, L. Cheng, C. Schou, M. H. Nissen, O. Trapp. Interconverting conformations of variants of the human amyloidogenic protein beta2-microglobulin quantitatively characterized by dynamic capillary electrophoresis and computer simulation. Anal. Chem. 2006, 78, 3667.
  • 24
    N. H. Heegaard, T. J. Jorgensen, N. Rozlosnik, D. B. Corlin, J. S. Pedersen, A. G. Tempesta, P. Roepstorff, R. Bauer, M. H. Nissen. Unfolding, aggregation, and seeded amyloid formation of lysine-58-cleaved beta2-microglobulin. Biochemistry 2005, 44, 4397.
  • 25
    H. Pal-Gabor, L. Gombos, A. Micsonai, E. Kovacs, E. Petrik, J. Kovacs, L. Graf, J. Fidy, H. Naiki, Y. Goto, K. Liliom, J. Kardos. Mechanism of lysophosphatidic acid-induced amyloid fibril formation of beta2-microglobulin in vitro under physiological conditions. Biochemistry 2009, 48, 5689.
  • 26
    E. Rennella, A. Corazza, L. Codutti, V. Bellotti, M. Stoppini, P. Viglino, F. Fogolari, G. Esposito. Determining the energy landscape of proteins by a fast isotope exchange NMR approach. J. Am. Chem. Soc. 2012, 134, 4457.
  • 27
    E. Rennella, A. Corazza, F. Fogolari, P. Viglino, S. Giorgetti, M. Stoppini, V. Bellotti, G. Esposito. Equilibrium unfolding thermodynamics of beta2-microglobulin analyzed through native-state H/D exchange. Biophys. J. 2009, 96, 169.
  • 28
    D. P. Smith, S. Jones, L. C. Serpell, M. Sunde, S. E. Radford. A systematic investigation into the effect of protein destabilisation on beta2-microglobulin amyloid formation. J. Mol. Biol. 2003, 330, 943.
  • 29
    M. I. Ivanova, M. R. Sawaya, M. Gingery, A. Attinger, D. Eisenberg. An amyloid-forming segment of beta2-microglobulin suggests a molecular model for the fibril. Proc. Natl. Acad. Sci. USA 2004, 101, 10584.
  • 30
    W. F. Xue, S. W. Homans, S. E. Radford. Systematic analysis of nucleation-dependent polymerisation reveals new insights into the mechansim of self-assembly. Proc. Natl. Acad. Sci. USA 2008, 105, 8926.
  • 31
    H. Xiao, J. K. Hoerner, S. J. Eyles, A. Dobo, E. Voigtman, A. I. Mel'cuk, I. A. Kaltashov. Mapping protein energy landscapes with amide hydrogen exchange and mass spectrometry: I. A generalized model for a two-state protein and comparison with experiment. Prot. Sci. 2005, 14, 543.
  • 32
    L. Konermann, X. Tong, Y. Pan. Protein structure and dynamics studied by mass spectrometry: H/D exchange, hydroxyl radical labeling, and related approaches. J. Mass Spectrom. 2008, 43, 1021.
  • 33
    T. Eichner, S. E. Radford. A generic mechanism of beta2-microglobulin amyloid assembly at neutral pH involving a specific proline switch. J. Mol. Biol. 2009, 386, 1312.
  • 34
    F. Chiti, N. Taddei, F. Baroni, C. Capanni, M. Stefani, G. Ramponi, C. M. Dobson. Kinetic partitioning of protein folding and aggregation. Nat. Struct. Biol. 2002, 9, 137.
  • 35
    G. Esposito, R. Michelutti, G. Verdone, P. Viglino, H. Hernandez, C. V. Robinson, A. Amoresano, F. Dal Piaz, M. Monti, P. Pucci, P. Mangione, M. Stoppini, G. Merlini, G. Ferri, V. Bellotti. Removal of the N-terminal hexapeptide from human beta2-microglobulin facilitates protein aggregation and fibril formation. Prot. Sci. 2000, 9, 831.
  • 36
    T. Eichner, A. P. Kalverda, G. S. Thompson, S. W. Homans, S. E. Radford. Conformational conversion during amyloid formation at atomic resolution. Mol. Cell 2011, 41, 161.
  • 37
    S. Jones, D. P. Smith, S. E. Radford. Role of the N- and C-terminal strands of beta2-microglobulin in amyloid formation at neutral pH. J. Mol. Biol. 2003, 330, 935.
  • 38
    M. F. Calabrese, A. D. Miranker. Formation of a stable oligomer of beta2-microglobulin requires only transient encounter with Cu(II). J. Mol. Biol. 2007, 367, 1.
  • 39
    C. M. Eakin, J. D. Knight, C. J. Morgan, M. A. Gelfand, A. D. Miranker. Formation of a copper specific binding site in non-native states of beta2-microglobulin. Biochemistry 2002, 41, 10646.
  • 40
    S. Yamamoto, I. Yamaguchi, K. Hasegawa, S. Tsutsumi, Y. Goto, F. Gejyo, H. Naiki. Glycosaminoglycans enhance the trifluoroethanol-induced extension of beta2-microglobulin-related amyloid fibrils at a neutral pH. J. Am. Soc. Nephrol. 2004, 15, 126.
  • 41
    E. Rennella, A. Corazza, S. Giorgetti, F. Fogolari, P. Viglino, R. Porcari, L. Verga, M. Stoppini, V. Bellotti, G. Esposito. Folding and fibrillogenesis: Clues from beta2-microglobulin. J. Mol. Biol. 2010, 401, 286.
  • 42
    C. Santambrogio, S. Ricagno, F. Sobott, M. Colombo, M. Bolognesi, R. Grandori. Characterization of beta2-microglobulin conformational intermediates associated to different fibrillation conditions. J. Mass Spectrom. 2011, 46, 734.
  • 43
    N. H. Heegaard, J. W. Sen, N. C. Kaarsholm, M. H. Nissen. Conformational intermediate of the amyloidogenic protein beta2-microglobulin at neutral pH. J. Biol. Chem. 2001, 276, 32657.
  • 44
    S. Yamamoto, K. Hasegawa, I. Yamaguchi, S. Tsutsumi, J. Kardos, Y. Goto, F. Gejyo, H. Naiki. Low concentrations of sodium dodecyl sulfate induce the extension of beta2-microglobulin-related amyloid fibrils at a neutral pH. Biochemistry 2004, 43, 11075.
  • 45
    D. A. Beck, B. J. Bennion, D. O. Alonso, V. Daggett. Simulations of macromolecules in protective and denaturing osmolytes: Properties of mixed solvent systems and their effects on water and protein structure and dynamics. Methods Enzymol. 2007, 428, 373.
  • 46
    Y. Zhang, P. S. Cremer. Chemistry of Hofmeister anions and osmolytes. Ann. Rev. Phys. Chem. 2010, 61, 63.
  • 47
    A. Corazza, E. Rennella, P. Schanda, M. C. Mimmi, T. Cutuil, S. Raimondi, S. Giorgetti, F. Fogolari, P. Viglino, L. Frydman, M. Gal, V. Bellotti, B. Brutscher, G. Esposito. Native-unlike long-lived intermediates along the folding pathway of the amyloidogenic protein beta2-microglobulin revealed by real-time two-dimensional NMR. J. Biol. Chem. 2010, 285, 5827.
  • 48
    A. T. Alexandrescu. Amyloid accomplices and enforcers. Prot. Sci. 2005, 14, 1.
  • 49
    D. M. Ferraro, N. D. Lazo, A. D. Robertson. EX1 hydrogen exchange and protein folding. Biochemistry 2004, 43, 587.
  • 50
    D. D. Weis, T. E. Wales, J. R. Engen, M. Hotchko, L. F. Ten Eyck. Identification and characterization of EX1 kinetics in H/D exchange mass spectrometry by peak width analysis. J. Am. Soc. Mass Spectrom. 2006, 17, 1498.
  • 51
    Y. Goto, H. Yagi, K. Yamaguchi, E. Chatani, T. Ban. Structure, formation and propagation of amyloid fibrils. Curr. Pharm. Des. 2008, 14, 3205.
  • 52
    S. Raimondi, N. Barbarini, P. Mangione, G. Esposito, S. Ricagno, M. Bolognesi, I. Zorzoli, L. Marchese, C. Soria, R. Bellazzi, M. Monti, M. Stoppini, M. Stefanelli, P. Magni, V. Bellotti. The two tryptophans of beta2-microglobulin have distinct roles in function and folding and might represent two independent responses to evolutionary pressure. BMC Evolut. Biol. 2011, 11, 159.