• 1
    S. K. Kosik. Alzheimer plaques and tangles: advances on both fronts. Trends Neurosci. 1991, 14, 218.
  • 2
    V. M. Lee, J. Q. Trojanowski. The disordered neuronal cytoskeleton in Alzheimer's disease. Curr. Opin. Neurobiol. 1992, 2, 653.
  • 3
    D. B. Evans, K. B. Rank, S. K. Sharma. A scintillation proximity assay for studying inhibitors of human tau protein kinase II/cdk5 using a 96-well format. J. Biochem. Biophys. Methods 2002, 50, 151.
  • 4
    C. Bancher, C. Brunner, H. Lassmann, H. Budka, K. Jellinger, G. Wiche, F. Seiteberger, I. Grundke-Iqbal, K. Iqbal, H. M. Wisniewski. Accumulation of abnormally phosphorylated τ precedes the formation of neurofibrillary tangles in Alzheimer's disease. Brain Res. 1989, 477, 90.
  • 5
    W. Bondareff, C. M. Wischik, M. Novak, W. B. Amos, A. Kluf, M. Roth. Molecular analysis of neurofibrillary degeneration in Alzheimer's disease. An immunohistochemical study. Am. J. Pathol. 1990, 137, 711.
  • 6
    M. Goedert. Tau protein and the neurofibrillary pathology of Alzheimer's disease. Trends Neurosci. 1993, 16, 460.
  • 7
    S. G. Greenberg, P. Davies. A preparation of Alzheimer paired helical filaments that displays tau protein by polyacrylamide gel electrophoresis. Proc. Natl. Acad. Sci. USA 1990, 87 5827.
  • 8
    H. Ksiezak-Reding, S. H. Yen. Structural stability of paired helical filaments required microtubule-binding domains of tau: a model for self-association. Neuron 1991, 6, 717.
  • 9
    V. M. Lee, B. J. Balin, L. Otvos, J. Q. Trojanowski. A68: A major subunit of paired helical filaments and derivatized forms of normal tau. Science 1991, 251, 675.
  • 10
    K. B. Ranka, A. M. Pauleya, K. Bhattacharya, Z. G. Wang, D. B. Evans, T. J. Fleck, J. A. Johnston, S. K. Sharma. Direct interaction of soluble human recombinant tau protein with Aβ 1-42 results in tau aggregation and hyperphosphorylation by tau protein kinase II. FEBS Lett. 2002, 514, 263.
  • 11
    M. D. Nguyen, R. C. Lariviere, J. P. Julien. Deregulation of Cdk5 in a mouse model of ALS: toxicity alleviated by perikaryal neurofilament inclusions. Neuron 2001, 30, 135.
  • 12
    S. Nakamura, Y. Kawamoto, S. Nakano, I. Akiquchi, J. Kimura. Cyclin-dependent kinase 5 and mitogen-activated protein kinase in glial cytoplasmic inclusions in multiple system atrophy. J. Neuropathol. Exp. Neurol. 1998, 57, 690.
  • 13
    A. I. Fletcher, R. Shuang, D. R. Giovannucci, L. Zhang, M.A. Bittner, E.L. Stuenkel. Regulation of exocytosis by cyclin-dependent kinase 5 via phosphorylation of Munc 18. J. Biol. Chem. 1999, 765, 4027.
  • 14
    J. A. Bibb, G. L. Synder, A. Nishi, Z. Yan, L. Meijer, A. A. Flenberg, L. H. Tsai, Y. T. Kwon, J. A. Girault, A. J. Czernik, H. C. Jr. Hemmings, A. C. Nairn, P. Greengard. Phosphorylation of DARPP-32 by Cdk5 modulates dopamine signaling in neurons. Nature 1999, 402, 669.
  • 15
    G. N. Patrick, L. Zukerberg, M. Nikolic, S. de la Monte, P. Dikkes, L. H. Tsai. Conversion of p35 to p25 deregulates CDK5 activity and promotes neurodegeneration. Nature 1999, 402, 615.
  • 16
    D. B. Evans, K. B. Rank, K. Bhattacharya, D. Thomsen, M. Gurney, S. K. Sharma. Tau phosphorylation at serine 396 and serine 404 by human recombinant tau protein kinase II inhibits tau's ability to promote microtubule assembly. J. Biol. Chem. 2000, 275, 24977.
  • 17
    M. S. Lee, H. T. Li. Cdk5: one of the links between senile plaques and neurofibrillary tangles? J. Alzheimer Dis. 2003, 5, 127.
  • 18
    A. Gratz, C. Gotz, J. Jose. A CE-based assay for human protein kinase CK2 activity measurement and inhibitor screening. Electrophoresis 2010, 31, 634.
  • 19
    H. Chen, E. Adams, A. Van Schepdael. LC-ESI-MS method for the monitoring of Ab1 tyrosine kinase. J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci. 2012, 897, 17.
  • 20
    X. Hai, X. Wang, M. El-Attug, E. Adams, J. Hoogmartens, A. Van Schepdael. In-capillary screening of matrix metalloproteinase inhibitors by electrophoretically mediated microanalysis with fluorescence detection. Anal. Chem. 2011, 83, 425.
  • 21
    L. A. A. de Jong, D. R. A. Uges, J. P. Franke, R. Bischoff. Receptor–ligand binding assays: technologies and applications. J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci. 2005, 829, 1.
  • 22
    K. D. Greis. Mass spectrometry for enzyme assays and inhibitor screening: An emerging application in pharmaceutical research. Mass Spectrom. Rev. 2007, 26, 324.
  • 23
    R. J. Huber, D. H. O'Day. The cyclin-dependent kinase inhibitor roscovitine inhibits kinase activity, cell proliferation, multicellular development, and Cdk5 nuclear translocation in Dictyostelium discoideum. J. Cell. Biochem. 2012, 113, 868.
  • 24
    A. Liesener, U. Karst. Monitoring enzymatic conversions by mass spectrometry: a critical review. Anal. Bioanal. Chem. 2005, 382, 1451.
  • 25
    S. Liu, J. P. Xing, Z. Zheng, F. R. Song, Z. Q. Liu, S. Y. Liu. Ultrahigh performance liquid chromatography–triple quadrupole mass spectrometry inhibitors fishing assay: A novel method for simultaneously screening of xanthine oxidase inhibitor and superoxide anion scavenger in a single analysis. Anal. Chim. Acta 2012, 715, 64.
  • 26
    A. Rettinger, K. Gempel, S. Hofmann, K. D. Gerbitz, M. F. Bauer. Tandem mass spectrometric assay for the determination of carnitine palmitoyltransferase II activity in muscle tissue. Anal. Biochem. 2002, 302, 246.
  • 27
    R. Rathore, J. J. Corr, D. T. Lebre, W. L. Seibel, K. D. Greis. Extending matrix-assisted laser desorption/ionization triple quadrupole mass spectrometry enzyme screening assays to targets with small molecule substrates. Rapid Commun. Mass Spectrom. 2009, 23, 3293.
  • 28
    H. K. Paudel, J. Lew, Z. Ali, J. H. Wang. Brain proline-directed protein kinase phosphorylates tau on sites that are abnormally phosphorylated in tau associated with Alzheimer's paired helical filaments. J. Biol. Chem. 1993, 268, 23512.
  • 29
    Z. Qi, X. D. Zhu, M. Goedert, D. J. Fujita, J. H. Wang. Effect of heparin on phosphorylation site specificity of neuronal Cdc2-like kinase. FEBS Lett. 1998, 423, 227.
  • 30
    L. L. Zhang, Y. Yan, Z. J. Liu, Z. Abliz, G. Liu. Identification of peptide substrate and small molecule inhibitors of testis-specific serine/threonine kinase1 (TSSK1) by the developed assays. J. Med. Chem. 2009, 52, 4419.
  • 31
    J. M. Lü, Q. Z. Yao, C. Y. Chen. Ginseng compounds: an update on their molecular mechanisms and medical applications. Curr. Vasc. Pharmacol. 2009, 7, 293.
  • 32
    Y. S. Ho, K. F. So, R. C. C. Chang. Anti-aging herbal medicine—How and why can they be used in aging-associated neurodegenerative diseases? Ageing Res. Rev. 2010, 9, 354.
  • 33
    H. Gao, J. A. Leary. Multiplex inhibitor screening and kinetic constant determinations for yeast hexokinase using mass spectrometry based assays. J. Am. Soc. Mass Spectrom. 2003, 14, 173.
  • 34
    K. N. Beaudette, J. Lew, J. H. Wang. Substrate specificity characterization of a cdc2-like kinase purified from bovine brain. J. Biol. Chem. 1993, 268, 20825.
  • 35
    N. Oumata, K. Bettayeb, Y. Ferandin, L. Demange, A. L. Giral, M.L. Goddard, V. Myrianthopoulos, E. Mikros, M. Flajolet, P. Greengard, L. Meijer, H. Galons. Roscovitine-derived, dual-specificity inhibitors of cyclin-dependent kinases and casein kinases 1. J. Med. Chem. 2008, 51, 5229.
  • 36
    L. W. Qi, C. Z. Wang, C. S. Yuan. American ginseng: Potential structure–function relationship in cancer chemoprevention. Biochem. Pharmacol. 2010, 80, 947.
  • 37
    W. Wang, Y. Q. Zhao, E. R. Rayburn, D. L. Hill, H. Wang, R. W. Zhang. In vitro anti-cancer activity and structure–activity relationships of natural products isolated from fruits of Panax ginseng. Cancer Chemo. Pharm. 2007, 59, 589.
  • 38
    W. Li, Y. Liu, J. W. Zhang, C. Z. Ai, N. Xiang, H. X. Liu. Anti-androgen-independent prostate cancer effects of ginsenoside metabolites in vitro: mechanism and possible structure–activity relationship investigation. Arch. Pharm. Res. 2009, 32, 49.
  • 39
    J. K. Laha, X. M. Zhang, L. Qiao, M. Liu, S. Chatterjee, S. Robinson, K. S. Kosik, G. D. Cuny. Structure–activity relationship study of 2,4-diami nothiazoles as cdk5/p25 kinase inhibitors. Bioorg. Med. Chem. Lett. 2011, 21, 2098.
  • 40
    L. Meijer, A. Borgne, O. Mulner, J. P. Chong, J. J. Blow, N. Inagaki, J. G. Delcros, J. P. Moulinoux. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur. J. Biochem. 1997, 243, 527.