• 1
    Y. Wang, C. T. Ho. Flavour chemistry of methylglyoxal and glyoxal. Chem. Soc. Rev. 2012, 41, 4140.
  • 2
    J. Degen, M. Hellwig, T. Henle. 1,2-Dicarbonyl compounds in commonly consumed foods. J. Agric. Food Chem. 2012, 60, 7071.
  • 3
    T. Miyata, K. Kurokawa, C. Van Ypersele De Strihou. Advanced glycation and lipoxidation end products: role of reactive carbonyl compounds generated during carbohydrate and lipid metabolism. J. Am. Soc. Nephrol. 2000, 11, 1744.
  • 4
    E. A. Abordo, H. S. Minhas, P. J. Thornalley. Accumulation of alpha-oxoaldehydes during oxidative stress: a role in cytotoxicity. Biochem. Pharmacol. 1999, 58, 641.
  • 5
    M. M. Anderson, S. L. Hazen, F. F. Hsu, J. W. Heinecke. Human neutrophils employ the myeloperoxidase–hydrogen peroxide–chloride system to convert hydroxyamino acids into glycolaldehyde, 2-hydroxypropanal, and acrolein. A mechanism for the generation of highly reactive α -hydroxy and α,β-unsaturated aldehydes by phagocytes at sites of inflammation. J. Clin. Invest. 1997, 99, 424.
  • 6
    M. Awada, P. C. Dedon. Oxidation of deoxyribose in DNA produces 3'-phosphoglycolaldehyde residues that give rise to glyoxal by a novel phosphonate rearrangement. Biochemistry 2001, 40, 8649.
  • 7
    A. Loidl-Stahlhofen, G. Spiteller. Alpha-hydroxyaldehydes, products of lipid peroxidation. Biochim. Biophys. Acta 1994, 1211, 156.
  • 8
    T. Henle. Protein-bound advanced glycation endproducts (AGEs) as bioactive amino acid derivatives in foods. Amino Acids 2005, 29, 31.
  • 9
    M. Namiki. Chemistry of Maillard reactions: recent studies on the browning reaction mechanism and the development of antioxidants and mutagens. Adv. Food Res. 1988, 32, 115.
  • 10
    P. J. Thornalley. Glycation in diabetic neuropathy. Int. Rev. Neurobiol. 2002, 50, 37.
  • 11
    J. Zeng, R. A. Dunlop, K. J. Rodgers, M. J. Davies. Evidence for inactivation of cysteine proteases by reactive cabonyls via glycation of active site thiols. Biochem. J. 2006, 398, 197.
  • 12
    R. Vanholder, G. Glorieux, R. De Smet, N. Lameire. New insights in uremic toxins. Kidney Int. Supplement 2003, 63, S6.
  • 13
    T. Miyata, S. Sugiyama, A. Saito, K. Kurokawa. Reactive carbonyl compounds related uremic toxicity (" carbonyl stress" ). Kidney Int. 2001, 59, S25.
  • 14
    K. Mera, T. Izumi, T. Maruyama, R. Nagai, J. Otagiri. Effect of reactive-aldehydes on the modification and dysfunction of human serum albumin. J. Pharm. Sci. 2010, 99, 1614.
  • 15
    P. J. Beisswenger, S. K. Howell, R. G. Nelson, M. Mauer, B. S. Szwergold. α-Oxoaldehyde metabolism and diabetic complications. Biochem. Soc. Trans. 2003, 31, 1358.
  • 16
    N. Rabbani, K. Sebekova, A. Heidland, P. J. Thornalley. Accumulation of free adduct glycation, [oxidation, and nitration products follows acute loss of renal function. Kidney Int. 2007, 72, 1113.
  • 17
    A. Makita, K. Yanagisawa, S. Kuwajima, N. Yoshioka, T. Atsumi, Y. Hasunuma, T. Koike. Advanced glycation endproducts and diabetic nephropathy. J. Diabetes Complications 1995, 9, 265.
  • 18
    T. Deguchi, H. Kusuhara, A. Takadate, H. Endou, M. Otagiri, Y. Sugiyama. Characterization of uremic toxin transport by organic anion transporters in the kidney. Kidney Int. 2004, 65, 164.
  • 19
    E. A. Popova, R. S. Mironova, M. K. Odjakova. Non-enzymatic glycosylation and deglycating enzymes. Biotechnol. Biotechnol. Eq. 2010, 24, 1928.
  • 20
    N. Ahmed, D. Dobler, M. Dean, P. J. Thornalley. Peptide mapping identifies hotspot site of modification in human serum albumin by methylglyoxal involved in ligand binding and esterase activity. J. Biol. Chem. 2005, 280, 5724.
  • 21
    M. E. Westwood, P. J. Thornalley. Molecular characteristics of methylglyoxal-modified bovine and human serum albumins. Comparison with glucose-derived advanced glycation endproduct-modified serum albumins. J. Protein Chem. 1995, 14, 359.
  • 22
    A. Klöpfer, R. Spanneberg, M. A. Glomb. Formation of arginine modifications in a model system of Nα-tert-butoxycarbonyl (Boc)-arginine with methylglyoxal. J. Agric. Food Chem. 2010, 59, 394.
  • 23
    J. W. C. Brock, D. J. S. Hinton, W. E. Cotham, T. O. Metz, S. R. Thorpe, J. W. Baynes, J. Ames. Proteomic analysis of arginine adducts on gluyoxal-modified ribonuclease. Mol. Cell. Proteomics 2004, 3, 1145.
  • 24
    M. U. Ahmed, S. R. Thorpe, J. W. Baynes. Identification of Nε-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. J. Biol. Chem. 1986, 261, 4889.
  • 25
    Y. Al-Abed, R. Bucala. Nε-carboxymethyllysine formation by direct addition of glyoxal to lysine during the maillard reaction. Bioorg. Med. Chem. Lett. 1995, 5, 2161.
  • 26
    C. M. Hayashi, R. Nagai, K. Miyazaki, F. Hayase, A. Tomohiro, O. Tomomichi, S. Horiuchi. Conversion of Amadori products of the Maillard reaction to Nε-(carboxymethyl)lysine by short-term heating: Possible detection of artifacts by immunohistochemistry. Lab. Invest. 2002, 82, 795.
  • 27
    N. Shangari, P. J. O'Brien. The cytotoxic mechanism of glyoxal involves oxidative stress. Biochem. Pharmacol. 2004, 68, 1433.
  • 28
    M. A. Glomb, G. Lang. Isolation and characterization of glyoxal-arginine modifications. J. Agric. Food Chem. 2001, 49, 1493.
  • 29
    P. J. Thornalley, S. Battah, N. Ahmed, N. Karachalias, S. Agalou, R. Babaei-Jadidi, A. Dawnay. Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem. J. 2003, 375, 581.
  • 30
    U. Schwarzenbolz, T. Haessner, H. Klostermeyer. On the reaction of glyoxal with proteins. Z. Lebensm. Unters Forsch. A 1997, 205, 121.
  • 31
    J. M. Ames. Mass spectrometry to detect the site specificity of advanced glycation/lipoxidation end-product formation on protein: some challenges and solutions. Biochem. Soc. Trans. 2008, 36, 1051.
  • 32
    A. F. Lopez-Clavijo, M. P. Barrow, N. Rabbani, P. J. Thornalley, P. B. O'Connor, Determination of types and binding sites of advanced glycation endproducts for substance P. Anal. Chem. 2012, 84, 10568.
  • 33
    C. Lin, J. J. Cournoyer, P. B. O'Connor. Use of a double resonance electron capture dissociation experiment to probe fragment intermediate lifetimes. J. Am. Soc. Mass Spectrom. 2006, 17, 1605.
  • 34
    J. Kua, S. W. Hanley, D. O. De Haan. Thermodynamics and kinetics of glyoxal dimer formation: a computational study. J. Phys. Chem. A 2008, 112, 66.
  • 35
    P. Caravatti, M. Alleman. The infinity cell – a new reapped-ion cell with radiofrequency covered trapping electrodes for Fourier transform ion cyclotron mass spectrometry. Org. Mass Spectrom. 1991, 26, 514.
  • 36
    Y. O. Tsybin, Y. O. P. Håkansson, B. A. Budnik, K. F. Haselmann, F. Kjeldsen, M. Gorshkov, R. A. Zubarev. Improved low-energy electron injection systems for high rate electron capture dissociation in Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom. 2001, 15, 1849.
  • 37
    M. B. Comisarow, V. Grassi, G. Parisor. Fourier transform ion cycotron double resonance. Chem. Phys. Lett. 1978, 57, 413.
  • 38
    P. Roepstorff, J. Fohlman. Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed. Mass Spectrom. 1984, 11, 601.
  • 39
    K. Biemann. Nomenclature for peptide fragment ions (positive ions). Methods Enzymol. 1990, 193, 886.
  • 40
    J. Axelsson, M. Palmblad, K. Håkansson, P. Håkansson. Electron capture dissociation of substance P using a commercially available Fourier transform ion cyclotron resonance mass spectrometer. Rapid Commun. Mass Spectrom. 1999, 13, 474.
  • 41
    K. P. C. Vollhardt, N. E. Schore. Organic Chemistry Structure and Function. W. H. Freeman and Co., New York, 2002.