SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    M. Copland, H. G. Jorgensen, T. L. Holyoake. Evolving molecular therapy for chronic myeloid leukaemia – Are we on target? Hematology 2005, 10, 349.
  • 2
    B. A. Schwetz. From the Food and Drug Administration. J. Am. Med. Assn. 2001, 286, 35.
  • 3
    G. D. Demetri, M. von Mehren, C. D. Blanke, A. D. Van den Abbeele, B. Eisenberg, P. J. Roberts, M. C. Heinrich, D. A. Tuveson, S. Singer, M. Kanicek, J. A. Flecher, S. G. Silverman, S. L. Silberman, R. Capdeville, B. Kiese, B. Peng, S. Dimitrijevic, B. J. Druker, C. Corless, C. D. Flecher, H. Joensuu. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N. Engl. J. Med. 2002, 347, 472.
  • 4
    M. H. Cohen, G. Williams, J. R. Johnson, J. Duan, J. Gobburu, A. Rahman, K. Benson, J. Leighton, S. K. Kim, R. Wood, M. Rothman, G. Chen, K. Maung U, A. M. Staten, R. Pazdur. Approval summary for imatinib mesylate capsules in the treatment of chronic myelogenous leukemia. Clin. Cancer Res. 2002, 8, 935.
  • 5
    M. Talpaz, R. T. Silver, B. J. Druker, J. M. Golman, C. Gambacorti-passerini, F. Guilhot, C. A. Schiffer, T. Fischer, M. W. Deininger, A. L. Lennard, A. Hochhaus, O. G. Ottmannn, A. Gratwihl, M. Baccarani, R. Stone, S. Tura, F. X. Mahon, S. Fernandes-Reese, I. Gathmann, R. Capdeville, H. M. Kantarjian, C. L. Sawyers. Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: Results of the phase 2 study. Blood 2002, 99, 1928.
  • 6
    S. G. O'Brien, F. Guilhot, R. A. Larson, I. Gathmann, M. Baccarani, F. Cervantes, J. J. Cornelisson, T. Fischer, A. Hochhaus, T. Hughes, K. Lechner, J. L. Nielsen, P. Rouselot, J. Reiffers, G. Saglio, J. Shepherd, B. Simonsson, A. Gratwohl, J. M. Goldman, H. Kantarjian, K. Taylor, G. Verhoef, A. E. Bolton, R. Capdeville, B. J. Druker. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N. Engl. J. Med. 2003, 348, 994.
  • 7
    E. Ridruejo, R. Cacchione, A. G. Villamil, S. Marciano, A. C. Gadano, O. G. Mando. Imatinib-induced fatal acute liver failure. World J. Gastroenterol. 2007, 13, 6608.
  • 8
    O. Tonyali, U. Coskun, R. Yildiz, T. Karakan, U. Demirci, N. Akyurek, M. Benekli, S. Buyukberber. Imatinib mesylate-induced acute liver failure in a patient with gastrointestinal stromal tumors. Med. Oncol. 2010, 27, 768.
  • 9
    A.M. Filppula, J. Laitila, P. J. Neuvonen, J. T. Backman. Potent mechanism-based inhibition of CYP3A4 by imatinib explains its liability to interact with CYP3A4 aubstrates. Br. J. Pharmacol. 2012, 165, 2787.
  • 10
    A. M. Filppula, M. Neuvonen, J. Laitila, P. J. Neuvonen, J. T. Backman. Autoinhibition of CYP3A4 leads to major role of CYP2C8 in imatinib metabolism: Variability in CYP2C8 activity may alter plasma concentrations and response. Drug Metab. Dispos. 2013, 41, 50.
  • 11
    J. R. Kenny, S. Mukadam, C. Zhang, S. Tay, C. Collins, A. Galetin, S. C. Khojasteh. Drug-drug interaction potential of marketed oncology drugs: In vitro assessment of time-dependent cytochrome P450 inhibition, reactive metabolite formation and drug-drug interaction prediction. Pharm. Res. 2012, 29, 1960.
  • 12
    T. A. Baillie. Future of toxicology – metabolic activation and drug design: Challenges and opportunities in chemical toxicology. Chem. Res. Toxicol. 2006, 19, 889.
  • 13
    A. S. Kalgutkar, I. Gardner, R. S. Obach, C. L. Shaffer, E. Callegari, K. R. Henne, A. E. Mutlib, D. K. Dalvie, J. S. Lee, Y. Nakai, J. P. O'Donnell, J. Boer, S. P. Harriman. A comprehensive listing of bioactivation pathways of organic functional groups. Curr. Drug Metab. 2005, 6, 161.
  • 14
    A. F. Stepan, D. P. Walker, J. Bauman, D. A. Price, T. A. Baillie, A. S. Kalgutkar, M. D. Aleo. Structural alert/reactive metabolite concept as applied in medicinal chemistry to mitigate the risk of idiosyncratic drug toxicity: A perspective based on the critical examination of trends in the top 200 drugs marketed in the United States. Chem. Res. Toxicol. 2011, 24, 1345.
  • 15
    H. Gschwind, U. Pfaar, F. Waldmeier, M. Zollinger, C. Sayer, P. Zbinden, M. Hayes, R. Pokorny, M. Seiberling, M. Ben-Am, B. Peng, G. Gross. Metabolism and disposition of imatinib mesylate in healthy volunteers. Drug Metab. Dispos. 2005, 33, 1503.
  • 16
    M. Marull, B. Rochat. Fragmentation study of imatinib and characterization of new imatinib metabolites by liquid chromatography-triple-quadrupole and linear ion trap mass spectrometers. J. Mass Spectrom. 2006, 41, 390.
  • 17
    R. Singh, M. V. Silva Elipe, P. G. Pearson, B. H. Arison, B. K. Wong, R. White, X. Yu, C. S. Burgey, J. H. Lin, T. A. Baillie. Metabolic activation of a pyrazinone-containing thrombin inhibitor: Evidence for novel biotransformation involving pyrazinone ring oxidation, rearrangement, and covalent binding to proteins. Chem. Res. Toxicol. 2003, 16, 198.
  • 18
    X. Li, Y. He, C. H. Ruiz, M. Koenig, M. D. Cameron. Characterization of dasatinib and its structural analogs as CYP3A4 mechanism-based inactivators and the proposed bioactivation pathways. Drug Metab. Dispos. 2009, 37, 1242.
  • 19
    K. R. Wadekar, M. Bhalme, S. S. Rao, K. V. Reddy, L. S. Kumar, E. Balasubrahmanyam. Evaluating impurities in drugs (Part II of III). Pharmaceut. Technol. 2012, 36, 58.
  • 20
    G. A. Doss, R. R. Miller, Z. Zhang, Y. Teffera, R. P. Nargund, B. Palucki, M. K. Park, Y. S. Tang, D. C. Evans, T. A. Baillie, R. A. Stearns. Metabolic activation of a 1,3-disubstituted piperazine derivative: Evidence for a novel ring contraction to an imidazoline. Chem. Res. Toxicol. 2005, 18, 271.
  • 21
    C. Gu, C. S. Elmore, J. Lin, D. Zhou, R. Luzietti, P. Dorff, S. W. Grimm. Metabolism of a GPCR modulator including two major 1,2,4-oxadiazole ring-opened metabolites and a rearranged cysteine-piperazine adduct. Drug Metab. Dispos. 2012, 40, 1151.
  • 22
    A. S. Kalgutkar, D. K. Dalvie, J. Aubrecht, E. B. Smith, S. L. Coffing, J. R. Cheung, C. Vage, M. E. Lame, P. Chiang, K. F. McClure, T. S. Maurer, R. V. Coelho, V. F. Soliman, K. Schildknegt. Genotoxicity of 2-(3-chlorobenzyloxy)-6-(piperazinyl)pyrazine, a novel 5-hydroxytryptamine2c receptor agonist for the treatment of obesity: Role of metabolic activation. Drug Metab. Dispos. 2007, 35, 848.
  • 23
    W. G. Lai, N. Zahid, J. P. Uetrecht. Metabolism of trimethoprim to a reactive iminoquinone metabolite by activated human neutrophils and hepatic microsomes. J. Pharmacol. Exp. Ther. 1999, 291, 292.
  • 24
    A. Li, E. Yu, S. C. Ring, J. P. Chovan. Boronic acid-containing proteasome inhibitors – alert to potential pharmaceutical bioactivation. Chem. Res. Toxicol. 2013, 26, 608.
  • 25
    B. L. Palucki, M. K. Park, R. P. Nargund, R. Tang, T. MacNeil, D. H. Weinberg, A. Vongs, C. I. Rosenblum, G. A. Doss, R. R. Miller, R. A. Stearns, Q. Peng, C. Tamvakopoulos, L. H. van der Ploeg, A. A. Patchett. 2-Piperazinecarboxamides as potent and selective melanocortin subtype-4 receptor agonists. Bioorg. Med. Chem. Lett. 2005, 15, 1993.