• Agilent Technologies (2012), Vector network analyzer uncertainty calculator [Online]. Available: http://www.home.\%3Aepsg\%3Asud, [Accessed date on December 03 2012].
  • Bardin, J. (2009), Silicon-Germanium heterojunction bipolar transistors for extremely low-noise applications, Ph.D. thesis, California Institute of Technology, USA.
  • Cano, J. L., N. Wadefalk, and J. D. Gallego-Puyol (2010), Ultra-wideband chip attenuator for precise noise measurements at cryogenic temperatures, IEEE Trans. Microw. Theory Tech., 58, 25042510.
  • Grosvenor, C. A., J. Randa, and R. L. Billinger (2000), Design and testing of NFRad–A new noise measurement system, NIST Tech. Note 1518.
  • Gu, D., J. Randa, R. L. Billinger, and D. K. Walker (2012), A verification method for noise-temperature measurements on cryogenic low-noise amplifiers, Proc. 2012 Conference on Precision Electromagnetic Measurements. 32–33, Washington D.C., USA.
  • Hu, R., and S. Weinreb (2004), A novel wide-band noise-parameter measurement method and its cryogenic application, IEEE Trans. Microw. Theory Tech., 52, 14981507.
  • Laskar, J., J. J. Bautista, M. Nishimoto, M. Hamai, and R. Lai (1996), Development of accurate on-wafer, cryogenic characterization techniques, IEEE Trans. Microw. Theory Tech., 44, 11781183.
  • Malmkvist, M., E. Lefebvre, M. Borg, L. Desplanque, X. Wallart, G. Dambrine, S. Bollaert, and J. Grahn (2008), Electrical characterization and small-signal modeling of InAs/AlSb HEMTs for low-noise and high-frequency applications, IEEE Trans. Microw. Theory Tech., 56, 26852691.
  • Mellberg, A., N. Wadefalk, I. Angelov, E. Choumas, E. Kollberg, N. Rorsman, P. Starski, J. Stenarson, and H. Zirath (2004), Cryogenic 2–4 GHz ultra low noise amplifier, IEEE Microwave Symp. Digest, 1, 161163.
  • Pospieszalski, M. W. (2013), Cryogenic amplifiers for Jansky Very Large Array receivers, Proc. 19th International Conference on Microwave, Radar, and Wireless Communications, 748–751, Warsaw, Poland.
  • Randa, J. (2002), Noise-parameter uncertainties: A Monte Carlo simulation, J. Res. Nat. Inst. Stand. Technol., 107, 431444.
  • Randa, J., E. Gerecht, D. Gu, and R. L. Billinger (2006), Precision measurement method for cryogenic amplifier noise temperatures below 5 K, IEEE Trans. Microw. Theory Tech., 54, 11801189.
  • Rodriguez-Morales, F., K. S. Yngvesson, R. Zannoni, E. Gerecht, D. Gu, X. Zhao, N. Wadefalk, and J. J. Nicholson (2006), Development of integrated HEB/MMIC receivers for near-range terahertz imaging, IEEE Trans. Microw. Theory Tech., 54, 23012311.
  • Russell, D., and S. Weinreb (2012), Cryogenic self-calibrating noise parameter measurement system, IEEE Trans. Microw. Theory Tech., 60, 14561467.
  • Schleeh, J., G. Alestig, J. Halonen, A. Malmros, B. Nilsson, P. A. Nilsson, J. P. Starski, N. Wadefalk, H. Zirath, and J. Grahn (2012), Ultralow-power cryogenic InP HEMT with minimum noise temperature of 1 K at 6 GHz, IEEE Electron Device Lett., 33, 664666.
  • Taylor, B. N., and C. E. Kuyatt (1994), Guidelines for evaluating and expressing the uncertainty of NIST measurement results, NIST Tech. Note 1297.
  • Wadefalk, N., et al. (2003), Cryogenic wide-band ultra-low-noise IF amplifiers operating at ultra-low DC power, IEEE Trans. Microw. Theory Tech., 51, 17051711.
  • Webber, J. C., and M. W. Pospieszalski (2002), Microwave instrumentation for radio astronomy, IEEE Trans. Microw. Theory Tech., 50, 986995.
  • Wedge, S., and D. Rutledge (1992), Wave techniques for noise modeling and measurement, IEEE Trans. Microw. Theory Tech., 40, 20042012.
  • Ye, P. D., B. Yang, K. K. Ng, J. Bude, G. D. Wilk, S. Halder, and J. C. M. Hwang (2005),GaN metal-oxide-semiconductor high-electron-mobility-transistor with atomic layer deposited Al2O3 as gate dielectric, Appl. Phys. Lett., 86, 063501.