Combined MODFLOW-FRACTRAN Application to Assess Chlorinated Solvent Transport and Remediation in Fractured Sedimentary Rock



Detailed field investigations and numerical modeling were conducted to evaluate transport and fate of chlorinated solvent contamination in a fractured sedimentary bedrock aquifer (sandstone/siltstone/mudstone) at a Superfund site in central New Jersey. Field investigations provided information on the fractured rock system hydrogeology, including hydraulic gradients, bulk hydraulic conductivity, fracture network, and rock matrix, and on depth discrete contaminant distribution in fractures (via groundwater sampling) and matrix (via detailed subsampling of continuous cores). The numerical modeling endeavor involved application of both an equivalent porous media (EPM) model for flow and a discrete fracture network (DFN) model for transport. This combination of complementary models, informed by appropriate field data, allowed a quantitative representation of the conceptual site model (CSM) to assess relative importance of various processes, and to examine efficacy of remedial alternatives. Modeling progressed in two stages: first a large-scale (20 km x 25 km domain) 3-D EPM flow model (MODFLOW) was used to evaluate the bulk groundwater flow system and contaminant transport pathways under historic and current aquifer stress conditions and current stresses. Then, results of the flow model informed a 2-D DFN transport model (FRACTRAN) to evaluate transport along a 1,000-m flowpath from the source represented as a 2-D vertical cross-section. The combined model results were used to interpret and estimate the current and potential future extent of rock matrix and aqueous-phase contaminant conditions and evaluate remedial strategies. Results of this study show strong effects of matrix diffusion and other processes on attenuating the plume such that future impacts on downgradient well fields under the hydraulic stresses modeled should be negligible. Results also showed futility of source remediation efforts in the fractured rock, and supported a technical impracticability (TI) waiver for the site. © 2013 Wiley Periodicals, Inc.