• AFCEE (Air Force Center for Engineering and the Environment). (2006). Monitoring and Remediation Optimization System (MAROS) version 2.2. Retrieved from
  • Bradley, P. J., Phillips, C. M., Gay, N. K., & Fuemmeler, S. J. (2004). Geologic map of the Chapel Hill 7.5-minute quadrangle, Orange and Durham Counties, North Carolina. North Carolina Geological Survey Open-file Report 2004-01. Retrieved from
  • Gavaskar, A., Tatar, L., & Condit, W. (2005). Cost and performance report: Nanoscale zerovalent iron technologies for source remediation. Port Hueneme, CA: Naval Facilities Engineering Command (NAVFAC).
  • Henn, K. W., & Waddill, T. W. (2006). Utilization of nanoscale zero-valent iron for source remediation—A case study. Remediation, 16(2), 5777.
  • Liu, Y., Majetich, S. A., Tilton, R. D., Sholl D. S., & Lowry, G. V. (2005). TCE Dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environmental Science & Technololgy, 39(5), 13381345.
  • Matheson, L. J., & Tratnyek, P. G. (1994). Reductive dehalogenation of chlorinated methanes by iron metal. Environmental Science & Technololgy, 28(12), 20452053.
  • Roberts, A. L., Totten, L. A., Arnold, W. A., Burris, D. R., & Campbell, T. J. (1996). Reductive elimination of chlorinated ethylenes by zero-valent metals. Environmental Science & Technology, 30, 26542659.
  • Tobiszewski, M., & Namieśnik, J. (2012). Abiotic degradation of chlorinated ethanes and ethenes in water. Environmental Science and Pollution Research International, 19(6), 19942006.
  • Zhang, W. (2003). Nanoscale iron particles for environmental remediation: An overview. Journal of Nanoparticle Research, 5, 323332.