SEARCH

SEARCH BY CITATION

REFERENCES

  • ARCADIS. (2009). Groundwater monitoring report, former fuel farm (SWMUs 32/37/38).
  • ARCADIS. (2012). Groundwater monitoring report, former fuel farm (SWMUs 32/37/38).
  • Arnold, C. W., Parfitt, D. G., & Kaltreider, M. (2007). Phytovolatilization of oxygenated gasoline-impacted groundwater at an underground storage tank site via conifers. International Journal of Phytoremediation, 9, 5369.
  • Barac, T., Weyens, N., Oeyen, L., Taghavi, S., van der Lelie, D., Dubin, D., Spliet, M., & Vangronsveld, J. (2009). Field note: Hydraulic containment of BTEX plume using poplar trees. International Journal of Phytoremediation, 11, 416424.
  • Burken, J., & Schnoor, J. (1999). Distribution and volatilization of organic compounds and chlorinated-solvent contaminated groundwater. International Journal of Phytoremediation, 3, 6185.
  • Calabrese, E. J., & Baldwin, L. A. (2003). Hormesis: The dose-response revolution. Annual Review of Pharmacology and Toxicology, 43, 175197.
  • Carsan, S., Orwa, C., Harwood, C., Kindt, R., Stroebel, A., Neufeldt, H., & Jamnadass, R. (2012). African Wood Density Database. Nairobi: World Agroforestry Centre.
  • Compernolle, T., Van Passel, S., Weyens, N., Vangronsveld, J., Lebbe, L., & Thewys, T. (2012). Groundwater remediation and the cost effectiveness of phytoremediation. International Journal of Phytoremediation, 14, 861877.
  • Cook, R., & Hesterberg, D. (2013). Comparison of trees and grasses for rhizoremediation of petroleum hydrocarbons. International Journal of Phytoremediation, 15, 844860.
  • Cook, R. L., Landmeyer, J., Atkinson, B., Messier, J. P., & Nichols, E. G. (2010). Field note: Successful establishment of a phytoremediation system at a petroleum hydrocarbon contaminated shallow aquifer: Trends, trials, and tribulations. International Journal of Phytoremediation, 12, 716732.
  • El-Gendy, A., Espina, A., Chapman, B., & Schnoor, J. (2010). Beneficial effects of oxygen addition and hybrid poplar phytoremediation of petroleum-contaminated soils. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 45, 14921503.
  • El-Gendy, A., Svingos, S., Brice, D., Garretson, J., & Schnoor, J. (2009). Assessments of the efficacy of a long-term application of a phytoremediation system using hybrid poplar trees at former oil tank farm sites. Water Environment Research, 81, 486498.
  • Ferro, A., Adham, T., Berra, B., & Tsao, D. (2013). Performance of deep-rooted phreatophytic trees at a site containing total petroleum hydrocarbons. International Journal of Phytoremediation, 15, 232244.
  • Ferro, A., Chard, J., Kjelgren, R., Chard, B., Turner, D., & Montague, T. (2001). Groundwater capture using hybrid poplar trees: Evaluation of a system in Ogden, Utah. International Journal of Phytoremediation, 3, 87104.
  • Ferro, A., Kennedy, J., Kjelgre, R., Rieder, J., & Perrin, S. (1999). Toxicity assessment of volatile organic compounds in poplar trees. International Journal of Phytoremediation, 1, 917.
  • Hong, M., Farmayan, W., Dortch, I., Chiang, C., McMillan, S., & Schnoor, J. (2001). Phytoremediation of MTBE from a groundwater plume. Environmental Science & Technology, 35, 12311239.
  • Interstate Technology & Regulatory Council (ITRC). (2006). Technology overview of passive sampler technologies. DSP-4, Washington, DC: Author. Retrieved from http://www.itrcweb.org/Guidance/GetDocument?documentID=26
  • Landmeyer, J. (2001). Monitoring the effect of poplar trees on petroleum-hydrocarbon following uptake by hybrid poplar trees. International Journal of Phytoremediation, 1, 139151.
  • Ma, X., Richter, A., Albers, S., & Burken, J. (2004). Phytoremediation of MTBE with hybrid poplar trees. International Journal of Phytoremediation, 6, 157167.
  • Simon, J. (2013). Editor's perspective—Solving complex groundwater sites. Remediation Journal, 23(4), 15.
  • Steward, R., & Ahring, T. (2009). An analytical solution for groundwater uptake by phreatophytes spanning spatial scales from plant to field to regional. Journal of Engineering Mathematics, 64, 85103.
  • Trapp, S., Zambrano, K., Kusk, K., & Karlson, U. (2000). A phytotoxicity test using transpiration of willows. Archives of Environmental Contamamination and Toxicology, 39, 154160.
  • Trapp, S., Kohler, A., Larsen, L., Zambrano, K., & Karlson, U. (2001). Phytotoxicity of fresh and willow and poplar trees. Journal of Soils & Sediments, 1, 7176.
  • United States Environmental Protection Agency. (2010). Superfund remedy report. 13th ed. (EPA-542-R-10-004). Office of Solid Waste and Emergency Response Washington, DC: Author.
  • United States Environmental Protection Agency (USEPA). (2011a). Green remediation best management practices: Sites with leaking underground storage tank systems, June 2011. (EPA 542-F-11-008). Office of Solid Waste and Emergency Response Washington, DC: Author.
  • United States Environmental Protection Agency (USEPA). (2011b). Groundwater sampling operating procedure. (SESDPROC-301-R2) Science and Ecosystem Support Division. Athens, GA: Author.
  • United States Environmental Protection Agency (USEPA). (2011c). Field sampling quality control. (SESDPROC-011-R3). Science and Ecosystem Support Division, Athens, GA: Author.
  • Weishaar, J., Tsao, D., & Burken, J. (2009). Phytoremediation of BTEX hydrocarbons: Potential impacts of diurnal groundwater fluctuation on microbial degradation. International Journal of Phytoremediation, 11, 509523.
  • Yu, X., & Gu, J. (2006). Uptake, metabolism, and toxicity of methyl tert-butyl ether (MTBE) in weeping willows. Journal of Hazardous Materials, 137, 14171423.