Persistent HBV and HCV infection represent major causes of chronic liver disease with a high risk of progression to liver cirrhosis and hepatocellular carcinoma (HCC). Conventional protein-based vaccines are highly efficacious in preventing HBV infection; whereas in therapeutic settings with chronically infected patients, results have been disappointing. Prophylactic vaccination against HCV infection has not yet been achieved due to many impediments including frequent spontaneous mutations of the virus with escape from immune system control. Using animal models it has been demonstrated that DNA-based immunisation strategies may overcome this problem because of their potential to induce immunity against multiple viral epitopes. DNA-based vaccines mimic the effect of live attenuated viral vaccines, eliciting cell mediated immunity in addition to inducing humoral responses. Efficacy may further be improved by addition of DNA encoding immunomodulatory cytokines and more recently, direct genetic modulation of antigen-presenting cells, such as dendritic cells (DC), has been shown to increase antigen-specific immune responses. This review focuses on immunological aspects of chronic HBV and HCV infection and on the potential of DNA- and DC-based vaccines for the treatment of chronic viral hepatitis. Copyright © 2002 John Wiley & Sons, Ltd.