• Bertozzi, M., Broggi, A., & Fascioli, A. (2000). Vision-based intelligent vehicles: State of the art and perspectives. Journal of Robotics and Autonomous Systems, 32, 116.
  • Biber, P., & Strasser, W. (2006). nscan-matching: Simultaneous matching of multiple scans and application to SLAM. In IEEE International Conference on Robotics and Automation, Orlando, FL (pp. 22702276). IEEE.
  • Borgefors, G. (1986). Distance transformations in digital images. Computer Vision, Graphics, and Image Processing, 34(3), 344371.
  • Bosse, M., Newman, P. M., Leonard, J. J., Soika, M., Feiten, W., & Teller, S. J. (2003). An Atlas framework for scalable mapping. In Proceedings of the 2003 IEEE International Conference on Robotics and Automation, Taipei, Taiwan (pp. 18991906). IEEE.
  • Bracewell, R. N. (1990). Numerical transforms. Science, 248(4956), 697704.
  • DARPA (2005). Grand Challenge '05.
  • Dickmanns, E. D., Behringer, R., Dickmanns, D., Hildebrandt, T., Maurer, M., Thomanek, F., & Schielen, J. (1994). The seeing passenger car “VaMoRs-P.” In Proceedings of the Symposium on Intelligent Vehicles, Paris (pp. 6873). IEEE.
  • Franke, U., Gavrila, D., Gern, A., Goerzig, S., Jansen, R., Paetzold, F., & Wöhler, C. (2001). From door to door—Principles and applications of computer vision for driver assistant systems. In L.Vlacic, F.Harashima, & M.Parent (Eds.), Intelligent vehicle technologies: Theory and applications (chapter 6, pp. 131188) Oxford: Butterworth Heinemann.
  • Goebl, M., & Färber, G. (2007a). Eine realzeitfähige Softwarearchitektur für kognitive Automobile. In K.Berns & T.Luksch (Eds.), Autonome Mobile Systeme 2007, Informatik Aktuell (pp. 198204). Berlin: Springer-Verlag.
  • Goebl, M., & Färber, G. (2007b). A real-time-capable hard- and software architecture for joint image and knowledge processing in cognitive automobiles. In Proceedings of the IEEE Intelligent Vehicles Symposium, Istanbul, Turkey (pp. 734739). IEEE.
  • Hummel, B., Kammel, S., Dang, T., Duchow, C., & Stiller, C. (2006). Vision-based path-planning in unstructured environments. In IEEE Intelligent Vehicles Symposium, Tokyo, Japan (pp. 176181). IEEE.
  • Hwang, Y. K., & Ahuja, N. (1992). Gross motion planning—A survey. ACM Computing Surveys, 24(3), 219291.
  • Kalman, R. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82(1), 3545.
  • Kavraki, L. (1995). Computation of configuration-space obstacles using the fast Fourier transform. IEEE Transactions on Robotics and Automation, 11(3), 408413.
  • Li, H., & Vossepoel, A. M. (1998). Generation of the Euclidean skeleton from the vector distance map by a bisector decision rule. In CVPR '98: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (p. 66), Washington, DC. Washington, DC: IEEE Computer Society.
  • Müller, B., & Deutscher, J. (2007). Orbital tracking control for car parking via control of the clock. Methoden und Anwendungen der Regelungstechnik, Erlangen-Münchener Workshops 2005 und 2006 (pp. 18). Aachen: Shaker Verlag.
  • Nagel, H.-H., Enkelmann, W., & Struck, G. (1995). FhG-Co-Driver: From map-guided automatic driving by machine vision to a cooperative driver support. Mathematical and Computer Modelling, 22, 185212.
  • Özgüner, Ü., Stiller, C., & Redmill, K. (2007). Systems for safety and autonomous behavior in cars: The DARPA Grand Challenge experience. IEEE Proceedings, 95(2), 397412.
  • Reeds, J., & Shepp, R. (1991). Optimal paths for a car that goes both forward and backward. Pacific Journal of Mathematics, 145(2), 144154.
  • Schwartz, J. T., & Sharir, M. (1983). On the piano movers' problem, ii: General techniques for computing topological properties of real algebraic manifolds. Advances in Applied Mathematics, 4, 298351.
  • Stiller, C., Färber, G., & Kammel, S. (2007). Cooperative cognitive automobiles. In Proceedings of the IEEE Intelligent Vehicles Symposium, Istanbul, Turkey (pp. 215220). IEEE.
  • Šwestka, P., & Overmars, M. (1997). Motion planning for car-like robots using a probabilistic learning approach. International Journal of Robotics Research, 16(2), 119143.
  • Thorpe, C., Hebert, M. H., Kanade, T., & Shafer, S. A. (1988). Vision and navigation for the Carnegie-Mellon Navlab. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(3), 362373.
  • Thrun, S. (2002). Robotic mapping: A survey. In G.Lakemeyer & B.Nebel (Eds.), Exploring artificial intelligence in the new millennium San Francisco: Morgan Kaufmann.
  • Thrun, S. (2003). Learning occupancy grid maps with forward sensor models. Autonomous Robots, 15(2), 111127.
  • Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P., Gale, J., Halpenny, M., Hoffmann, G., Lau, K., Oakley, C., Palatucci, M., Pratt, V., Stang, P., Strohband, S., Dupont, C., Jendrossek, L.-E., Koelen, C., Markey, C., Rummel, C., Niekerk, J., Jensen, E., Alessandrini, P., Bradski, G., Davies, B., Ettinger, S., Kaehler, A., Nefian, A., & Mahoney, P. (2006). Stanley: The robot that won the DARPA Grand Challenge. Journal of Field Robotics, 23(9), 661692.
  • von Hundelshausen, F., Himmelsbach, M., Mueller, A., & Wuensche, H.-J. (2008). Tentacles—A biologically inspired approach for robot navigation. Journal of Field Robotics, 25(9), 640673.