SEARCH

SEARCH BY CITATION

References

  • Asnania, V., Delapb, D., & Creagera, C. (2009). The development of wheels for the Lunar Roving Vehicle. Journal of Terramechanics, 46(3), 89103.
  • Cordes, F., Roehr, M. R., & Kirchner, F. (2012). RIMRES: A Modular Reconfigurable Heterogeneous Multi-Robot Exploration System. i-SAIRAS 2012, 02A, 02.
  • Ding, L., Nagatani, K., Sato, K., Mora, A., Yoshida, K., Gao, H., & Deng, Z. (2010). Terramechanics-based high-fidelity dynamics simulation for wheeled mobile robot on deformable rough terrain. ICRA 2010, 49224927.
  • Doi, T., Hodoshima, R., Hirose, S., Fukuda, Y., Okamoto, T., & Mori, J. (2006). Development of quadruped walking robot TITAN XI for steep slopes—Slope map generation and map information application. Journal of Robotics and Mechatronics, 18(3), 318324.
  • Dunker, P. A., Lewinger, W. A., Hunt, A. J., & Quinn, R. D. (2009). A biologically inspired robot for lunar in-situ resource utilization. In IROS 2009, 50395044.
  • Graham, J. B. (2007, March). Prospecting Rovers for Lunar Exploration. In 2007 IEEE Aerospace Conference, Big Sky, MT (10.1109/AERO.2007.352706).
  • Haruyama, J., Ohtake, M., Matsunaga, T., Morota, T., Honda, C., Yokota, Y., Pieters, C. M, Hara, S., Hioki, K., Saiki, K., Miyamoto, H., Iwasaki, A., Abe, M., Ogawa, Y., Takeda, H., Shirao, M., Yamaji, A., & Josset, J. (2008).Lack of exposed ice inside lunar South Pole Shackleton Crater. Science 7 (Nov.), 938939.
  • Heverly, M., Matthews, J., Frost, M., & McQuin, C. (2010, May). Development of the Tri-ATHLETE Lunar Vehicle Prototype. Proceedings of the 40th Aerospace Mechanisms Symposium (pp. 317326),Cocoa Beach, FL.
  • Hirose, S., Yoneda, K., & Tsukagoshi, H. (1997a). TITAN VII:Quadruped Walking and Manipulating Robot on a Steep Slope. ICRA 494500.
  • Hirose, S., Kuwahara, H., Wakabayashi, Y., & Yoshioka, N. (1997b). The Mobility Design Cocepts/Characteristics and Ground Testing of an Offset-Wheel Rover Vehicle. Space Technology, 17(3), 183193.
  • Hirose, S., Tsukagoshi, H., & Arikawa, K. (1999). Development of Quadruped Walking Robots, TITAN-VII and TITAN VIII. Final Report of Research Program on Mechanism for Emergent Machine Intelligence, 535545.
  • Nagaoka, K., Kubota, T., Otsuki, M., & Tanaka, S. (2009). Robotic screw explorer for lunar subsurface investigation: Dynamics modelling and experimental validation. ICAR, 16.
  • Nesnas, A. D. I., Matthews, B. J., Abad-Manterola, P., Burdick, W. J., Edlund, A. J., Morrison, C. J., Peters, D. R., Tanner, M. M., Miyake, N. R., Solish, S. B., & Anderson, C. R. (2012). Axel and DuAxel rovers for the sustainable exploration of extreme terrains. Journal of Field Robotics, 29(4), 663685.
  • Nishida, S., & Wakabayashi, S. (2009). A mobility system for lunar rough terrain. ICCAS-SICE (pp. 47164721).
  • Ratnakumar, B. V., Smart, M. C., Ewell, R., Surampudi, S., & Marsh, R. (2000). Performance characteristics of lithium-ion cells for Mars sample return Athena Rover. Energy Conversion Engineering Conference and Exhibit, 2000. (IECEC) 35th Intersociety (pp. 638645).
  • Tadakuma, K., Masatsugu, M., & Hirose, S. (2005, July–Aug). Mechanical design of horizontal polyarticular expandable 3-wheeled planetary rover; “Tri-Star3.” In 2005 IEEE International Conference, Mechatronics and Automation (pp. 236241), Niagara Falls, Canada.
  • Toyobo Co., Ltd. (2003). Retrieved February 28, 2013, from http://www.toyobo-global.com/seihin/kc/pbo/.
  • Wettergreen, D., Moreland, S., Skonieczny, K., Jonak, D., Kohanbash, D., & Teza, J. (2010). Design and field experimentation of a prototype Lunar prospector. International Journal of Robotics Research, 29(12), 15501564.
  • Wilcox, H. B., Litwin, T., Biesiadecki, J. J., Matthews, J., Heverly, M., Morrison, J., Townsend, J., Ahmad, N., Sirota, A., & Cooper, K. (2007). Athlete: A cargo handling and manipulation robot for the moon. J. Field Robotics, 24(5), 421434.
  • Younse, P., Stroupe, A. W., Huntsberger, T. L., Garrett, M., Eigenbrode, J. L., Benning, L. G., Fogel, M., & Steele, A. (2009, March). Sample acquisition and caching using detachable scoops for Mars sample return. In 2009 IEEE Aerospace Conference, Big Sky, MT (10.1109/AERO.2009.4839312).