SEARCH

SEARCH BY CITATION

References

  • Agarie, S., W. Agata, F. Kubota, and P. B. Kaufman (1992), Physiological roles of silicon in photosynthesis and dry-matter production in rice plants:1. Effects of silicon and shading treatments, Jpn. J. Crop Sci., 61(2), 200206.
  • Alloway, B. J. (Ed.) (2012), Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability, 3rd ed.,  pp. 697 Springer, Heidelberg.
  • Alvarez, J., and L. E. Datnoff (2001), The economic potential of silicon for integrated management and sustainable rice production, Crop Prot., 20(1), 4348.
  • Arvidson, R. S., F. T. Mackenzie, and M. Guidry (2006), MAGic: A Phanerozoic model for the geochemical cycling of major rock-forming components, Am. J. Sci., 306(3), 135190.
  • Aufdenkampe, A. K., E. Mayorga, P. A. Raymond, J. M. Melack, S. C. Doney, S. R. Alin, R. E. Aalto, and K. Yoo (2011), Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere, Front. Ecol. Environ., 9(1), 5360.
  • Axelson, J. W., and E. L. Piret (1950), Crushing of single particles of crystalline quartz—Application of slow compression, Ind. Eng. Chem., 42(4), 665670.
  • Baláž, P., E. Turianicová, M. Fabián, R. A. Kleiv, J. Briancin, and A. Obut (2008), Structural changes in olivine (Mg,Fe)2SiO4 mechanically activated in high-energy mills, Int. J. Miner. Process., 88(1–2), 16.
  • Barnes, R. T., and P. A. Raymond (2009), The contribution of agricultural and urban activities to inorganic carbon fluxes within temperate watersheds, Chem. Geol., 266(3–4), 318327.
  • Bartholome, E., and A. S. Belward (2005), GLC2000: A new approach to global land cover mapping from Earth observation data, Int. J. Rem. Sens., 26(9), 19591977.
  • Bartoli, F. (1983), The biogeochemical cycle of silicon in two temperate forest ecosystems, Ecol. Bull., 35(35), 469476.
  • Bartoli, F., and B. Souchier (1978), Cycle and role of biogenetic silica in temperate forest ecosystems, Ann. Sci. For., 35(3), 187202.
  • Basile-Doelsch, I., J. D. Meunier, and C. Parron (2005), Another continental pool in the terrestrial silicon cycle, Nature, 433(7024), 399402.
  • Bayless, E. R., and M. S. Schulz (2003), Mineral precipitation and dissolution at two slag-disposal sites in northwestern Indiana, USA, Environ. Geol., 45(2), 252261.
  • Beer, C., et al. (2010), Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate, Science, 329(5993), 834838.
  • Berger, G., C. Claparols, C. Guy, and V. Daux (1994), Dissolution rate of a basalt glass in silica-rich solutions—Implications for long-term alteration, Geochim. Cosmochim. Acta, 58(22), 48754886.
  • Bernard, C. Y., H. H. Dürr, C. Heinze, J. Segschneider, and E. Maier-Reimer (2011), Contribution of riverine nutrients to the silicon biogeochemistry of the global ocean—A model study, Biogeosciences, 8(3), 551564.
  • Berner, R. A. (1975), Role of magnesium in crystal-growth of calcite and aragonite from sea-water, Geochim. Cosmochim. Acta, 39(4), 489.
  • Berner, R. A. (2004), The phanerozoic carbon cycle: CO2 and O2, Oxford University Press, Oxford, U.K.
  • Bertron, A., J. Duchesne, and G. Escadeillas (2005), Attack of cement pastes exposed to organic acids in manure, Cem. Concr. Res., 27(9–10), 898909.
  • Beusen, A. H. W., A. L. M. Dekkers, A. F. Bouwman, W. Ludwig, and J. Harrison (2005), Estimation of global river transport of sediments and associated particulate C, N, and P, Global Biogeochem. Cycles, 19(4), GB4505.
  • Beusen, A. H. W., A. F. Bouwman, H. H. Dürr, A. L. M. Dekkers, and J. Hartmann (2009), Global patterns of dissolved silica export to the coastal zone: Results from a spatially explicit global model, Global Biogeochem. Cycles, 23, GB0A02.
  • Blackstock, J. J., and J. C. S. Long (2010), The politics of geoengineering, Science, 327(5965), 527527.
  • Blum, W. E. H., B. Herbinger, A. Mentler, F. Ottner, M. Pollack, E. Unger, and W. W. Wenzel (1989a), The use of rock powders in agriculture. II. Efficiency of rock powders for soil amelioration, Z Pflanzenernaehr Bodenk, 152, 427430.
  • Blum, W. E. H., B. Herbinger, A. Mentler, F. Ottner, M. Pollack, E. Unger, and W. W. Wenzel (1989b), The use of rock powders in agriculture: I. Chemical and mineralogical composition and suitability of rock powders for fertilization, Z Pflanzenernaehr Bodenk, 152, 421425.
  • Bond, F. C. (1952), Third theory of comminution, Trans. Am. Inst. Min. Metall. Pet. Eng., 193.
  • Bormann, B. T., D. Wang, M. C. Snyder, F. H. Bormann, G. Benoit, and R. April (1998), Rapid, plant-induced weathering in an aggrading experimental ecosystem, Biogeochemistry, 43(2), 129155.
  • Boyd, P. W., and T. W. Trull (2007), Understanding the export of biogenic particles in oceanic waters: Is there consensus?, Prog Oceanogr, 72(4), 276312.
  • Bracmort, K., R. K. Lattanzio, and E. C. Barbour (2010), Geoengineering: Governance and Technology Policy, edited by C. R. Service, Washington, DC.
  • Brady, P. V., R. I. Dorn, A. J. Brazel, J. Clark, R. B. Moore, and T. Glidewell (1999), Direct measurement of the combined effects of lichen, rainfall, and temperature onsilicate weathering, Geochim. Cosmochim. Acta, 63(19-20), 32933300.
  • Buesseler, K. O., and P. W. Boyd (2009), Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean, Limnol. Oceanogr., 54(4), 12101232.
  • Buesseler, K. O., et al. (2007), Revisiting carbon flux through the ocean's twilight zone, Science, 316(5824), 567570.
  • BPC (2011), Task Force On Climate Remediation Research: Geoengineering: A National Strategic Plan for Research on the Potential Effectiveness, Feasibility, and Consequences of Climate Remediation Technologies. Bipartisan Policy Center, Washington, DC. Retrieved March 19, 2013, from http://bipartisanpolicy.org/sites/default/files/BPC%20Climate%20Remediation%20Final%20Report.pdf.
  • Calmels, D., J. Gaillardet, A. Brenot, and C. France-Lanord (2007), Sustained sulfide oxidation by physical erosion processes in the Mackenzie River basin: Climatic perspectives, Geology, 35(11), 10031006.
  • Chen, J. J., J. J. Thomas, H. F. W. Taylor, and H. M. Jennings (2004), Solubility and structure of calcium silicate hydrate, Cem. Concr. Res., 34(9), 14991519.
  • Chen, W., X. Q. Yao, K. Z. Cai, and J. N. Chen (2011), Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption, Biol. Trace Elem. Res., 142(1), 6776.
  • Cleveland, C. C., et al. (2011), Relationships among net primary productivity, nutrients and climate in tropical rain forest: A pan-tropical analysis, Ecol. Lett., 14(9), 939947.
  • Conley, D. J. (2002), Terrestrial ecosystems and the global biogeochemical silica cycle, Global Biogeochem. Cycles, 16(4), GB001804.
  • Conley, D. J., C. L. Schelske, and E. F. Stoermer (1993), Modification of the biogeochemical cycle of silica with eutrophication, Mar. Ecol. Prog. Ser., 101(1–2), 179192.
  • Cornelis, J. T., B. Delvaux, D. Cardinal, L. Andre, J. Ranger, and S. Opfergelt (2010a), Tracing mechanisms controlling the release of dissolved silicon in forest soil solutions using Si isotopes and Ge/Si ratios, Geochim. Cosmochim. Acta, 74(14), 39133924.
  • Cornelis, J. T., B. Delvaux, and H. Titeux (2010b), Contrasting silicon uptakes by coniferous trees: A hydroponic experiment on young seedlings, Plant Soil, 336(1–2), 99106.
  • Cornelis, J. T., J. Ranger, A. Iserentant, and B. Delvaux (2010c), Tree species impact the terrestrial cycle of silicon through various uptakes, Biogeochemistry, 97(2–3), 231245.
  • Cornelis, J. T., B. Delvaux, R. B. Georg, Y. Lucas, J. Ranger, and S. Opfergelt (2011a), Tracing the origin of dissolved silicon transferred from various soil-plant systems toward rivers: A review, Biogeosciences, 8(1), 89112.
  • Cornelis, J. T., H. Titeux, J. Ranger, and B. Delvaux (2011b), Identification and distribution of the readily soluble silicon pool in a temperate forest soil below three distinct tree species, Plant Soil, 342(1–2), 369378.
  • Coroneos, C., P. Hinsinger, and R. J. Gilkes (1995), Granite powder as a source of potassium for plants: A glasshouse bioassay comparing two pasture species, Nutr. Cycl. Agroecosyst., 45(2), 143152.
  • Crusciol, C. A. C., A. L. Pulz, L. B. Lemos, R. P. Soratto, and G. P. P. Lima (2009), Effects of silicon and drought stress on tuber yield and leaf biochemical characteristics in potato, Crop Sci., 49(3), 949954.
  • Crutzen, P. J. (2006), Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma?, Clim. Chang., 77(3–4), 211219.
  • CST (2010), Engineering the climate: Research needs and strategies for international coordination, Committee on Science & Technology, U.S. House of Representatives, (Chairman Bart Gordon), Washington.
  • Dart, R. C., K. M. Barovich, D. J. Chittleborough, and S. M. Hill (2007), Calcium in regolith carbonates of central and southern Australia: Its source and implications for the global carbon cycle, Palaeogeogr. Palaeoclimatol. Palaeoecol., 249(3–4), 322334.
  • Das, B., S. Prakash, P. S. R. Reddy, and V. N. Misra (2007), An overview of utilization of slag and sludge from steel industries, Resour. Conserv. Recy., 50(1), 4057.
  • Datnoff, L. E., R. N. Raid, G. H. Snyder, and D. B. Jones (1991), Effect of calcium silicate on blast and brown spot intensities and yields of rice, Plant Dis., 75(7), 729732.
  • Datnoff, L. E., G. H. Snyder, and C. W. Deren (1992), Influence of silicon fertilizer grades on blast and brown spot development and on rice yields, Plant Dis., 76(10), 10111013.
  • Datnoff, L. E., C. W. Deren, and G. H. Snyder (1997), Silicon fertilization for disease management of rice in Florida, Crop Prot., 16(6), 525531.
  • Daval, D., et al. (2011), Influence of amorphous silica layer formation on the dissolution rate of olivine at 90 degrees C and elevated pCO2, Chem. Geol., 284(1–2), 193209.
  • De La Rocha, C. L., and U. Passow (2013), The biological pump, in The Oceans and Marine Geochemistry, 2nd edition edited by M. J. Mottl, Elsevier, Oxford.
  • DeMaster, D. J. (2002), The accumulation and cycling of biogenic silica in the Southern Ocean: Revisiting the marine silica budget, Deep Sea Res. Part II, 49(16), 31553167.
  • Deren, C. W., L. E. Datnoff, G. H. Snyder, and F. G. Martin (1994), Silicon concentration, disease response, and yield components of rice genotypes grown on flooded organic histosols, Crop Sci., 34(3), 733737.
  • Dessert, C., B. Dupre, J. Gaillardet, L. M. Francois, and C. J. Allegre (2003), Basalt weathering laws and the impact of basalt weathering on the global carbon cycle, Chem. Geol., 202, 257273.
  • Dickson, A. G. (1981), An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total inorganic carbon from titration data, Deep Sea Res., 28A(6), 609623.
  • Dietzel, M., E. Usdowski, and J. Hoefs (1992), Chemical and 13C/12C- and 18O/16O-isotope evolution of alkaline drainage waters and the precipitation of calcite, Appl. Geochem., 7(2), 177184.
  • Dijkstra, J. J., H. A. van der Sloot, and R. N. J. Comans (2006), The leaching of major and trace elements from MSWI bottom ash as a function of pH and time, Appl. Geochem., 21(2), 335351.
  • Doney, S. C., V. J. Fabry, R. A. Feely, and J. A. Kleypas (2009), Ocean acidification: The other CO2 problem, Annu. Rev. Mar. Sci., 1, 169192.
  • Drever, J. I. (1997), The Geochemistry of Natural Waters, pp. 1–436, Prentice-Hall, Upper Saddle River.
  • Driscoll, C. T., G. B. Lawrence, A. J. Bulger, T. J. Butler, C. S. Cronan, C. Eagar, K. F. Lambert, G. E. Likens, J. L. Stoddard, and K. C. Weathers (2001), Acidic deposition in the northeastern United States: Sources and inputs, ecosystem effects, and management strategies, Bioscience, 51(3), 180198.
  • Dugdale, R. C., and F. P. Wilkerson (1998), Silicate regulation of new production in the equatorial Pacific upwelling, Nature, 391(6664), 270273.
  • Dunne, J. P., J. L. Sarmiento, and A. Gnanadesikan (2007), A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor, Global Biogeochem. Cycles, 21(4), GB4006.
  • Dürr, H. H., M. Meybeck, J. Hartmann, G. G. Laruelle, and V. Roubeix (2011), Global spatial distribution of natural riverine silica inputs to the coastal zone, Biogeosciences, 8(3), 597620.
  • Ebelmen, J. J. (1845), Sur les produits de la décomposition des espèces minérales de la famille des silicates, Anna. Mines, 7, 366.
  • Edmond, J. M., C. Measures, R. E. Mcduff, L. H. Chan, R. Collier, B. Grant, L. I. Gordon, and J. B. Corliss (1979), Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: The Galapagos data, Earth Planet. Sci. Lett., 46(1), 118.
  • Edmond, J. M., M. R. Palmer, C. I. Measures, B. Grant, and R. F. Stallard (1995), The fluvial geochemistry and denudation rate of the guayana shield in Venezuela, Colombia, and Brazil, Geochim. Cosmochim. Acta, 59(16), 33013325.
  • Elderfield, H., and A. Schultz (1996), Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean, Annu Rev Earth Pl Sc, 24, 191224.
  • Elliott, S. M., and H. P. Hanson (2003), Discussion - Syndication of the earth system: the future of geoscience? Environ. Sci. Pol., 6(5), 457463.
  • Epstein, E. (1994), The anomaly of silicon in plant biology, Proc. Natl. Acad. Sci. U. S. A., 91(1), 1117.
  • Epstein, E. (1999), Silicon, Annu. Rev. Plant Physiol., 50, 641664.
  • Epstein, E. (2009), Silicon: Its manifold roles in plants, Ann. Appl. Biol., 155(2), 155160.
  • Etheridge, D. M., L. P. Steele, R. L. Langenfelds, R. J. Francey, M. Barnola, and V. I. Morgan (1996), Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn, J. Geophys. Res. Atmos., 101(D2), 41154128.
  • EPSRC/NERC (2010), Climate Geoengineering Sandpit. Engineering and Physical Sciences Research Council / Natural Environment Research Council. Retrieved March 19, 2013, from http://www.epsrc.ac.uk/funding/calls/2010/Pages/climategeoengsandpit.aspx.
  • ETC (2011), Geopiracy: The Case Against Geoengineering. Action Group on Erosion, Technology and Concentration, Ottawa, Retrieved March 19, 2013 from http://www.etcgroup.org/content/geopiracy-case-against-geoengineering.
  • EU (2011), European Parliament resolution of 29 September 2011 on developing a common EU position ahead of the United Nations Conference on Sustainable Development (Rio + 20), Strasbourg, edited.
  • Fabry, V. J., B. A. Seibel, R. A. Feely, and J. C. Orr (2008), Impacts of ocean acidification on marine fauna and ecosystem processes, ICES J. Mar. Sci., 65(3), 414432.
  • FAO, IIASA, ISRIC, ISSCAS, and JRC (2008), Harmonized World Soil Database (version 1.0), edited by R. FAO, Italy and IIASA, FAO, Rome, Italy and IIASA.
  • Fekete, B. M., C. J. Vörösmarty, and W. Grabs (2002), High-resolution fields of global runoff combining observed river discharge and simulated water balances, Global Biogeochem. Cy., 16, 1042, doi:1010.1029/1999GB001254.
  • Ferraro, A. J., E. J. Highwood, and A. J. Charlton-Perez (2011), Stratospheric heating by potential geoengineering aerosols, Geophys. Res. Lett., 38, L24706.
  • Field, C. B., M. J. Behrenfeld, J. T. Randerson, and P. Falkowski (1998), Primary production of the biosphere: Integrating terrestrial and oceanic components, Science, 281(5374), 237240.
  • Flechard, C. R., A. Neftel, M. Jocher, C. Ammann, J. Leifeld, and J. Führer (2007), Temporal changes in soil pore space CO2 concentration and storage under permanent grassland, Agric. For. Meteorol., 142(1), 6684.
  • Fornara, D. A., S. Steinbeiss, N. P. McNamara, G. Gleixner, S. Oakley, P. R. Poulton, A. J. Macdonald, and R. D. Bardgett (2011), Increases in soil organic carbon sequestration can reduce the global warming potential of long-term liming to permanent grassland, Global Change Biol., 17(5), 19251934.
  • Fredericci, C., E. D. Zanotto, and E. C. Ziemath (2000), Crystallization mechanism and properties of a blast furnace slag glass, J. Non Cryst. Solids 273, 6475.
  • Friedlingstein, P., et al. (2006), Climate-carbon cycle feedback analysis: Results from the (CMIP)-M-4 model intercomparison, J. Clim., 19(14), 33373353.
  • Friedlingstein, P., S. Solomon, G. K. Plattner, R. Knutti, P. Ciais, and M. R. Raupach (2011), Long-term climate implications of twenty-first century options for carbon dioxide emission mitigation, Nat. Clim. Change, 1(9), 457461.
  • Fuerstenau, D. W., and A. Z. M. Abouzeid (2002), The energy efficiency of ball milling in comminution, Int. J. Miner. Process., 67(1-4), 161185.
  • Fulweiler, R. W., and S. W. Nixon (2005), Terrestrial vegetation and the seasonal cycle of dissolved silica in a southern New England coastal river, Biogeochemistry, 74(1), 115130.
  • Gaillardet, J., B. Dupré, P. Louvat, and C. J. Allègre (1999), Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers, Chem. Geol., 159(1-4), 330.
  • Galle, C., H. Peycelon, and R. Le Bescop (2004), Effect of an accelerated chemical degradation on water permeability and pore structure of cement-based materials, Adv. Cem. Res., 16(3), 105114.
  • Gao, Y. B., C. C. Ma, Q. F. Li, and T. R. Xin (2004), Effects of silicon application on drought resistance of cucumber plants, Soil Sci. Plant Nutr., 50(5), 623632.
  • Gao, X. P., C. Q. Zou, L. J. Wang, and F. S. Zhang (2006), Silicon decreases transpiration rate and conductance from stomata of maize plants, J. Plant Nutr., 29(9), 16371647.
  • GAO (2010), Climate Change: A Coordinated Strategy Could Focus Federal Geoengineering Research and Inform Governance Efforts. Report to the Chairman, Committee on Science and Technology, House of Representatives, edited, U.S. Government Accountability Office, Washington, D.C.
  • Garrels, R. M., and F. T. Mackenzie (1971), The evolution of sedimentary rocks, 1397 pp., Norton, New York.
  • Gee, C., M. H. Ramsey, J. Maskall, and I. Thornton (1997), Mineralogy and weathering processes in historical smelting slags and their effect on the mobilisation of lead, J. Geochem. Explor., 58(2–3), 249257.
  • Godderis, Y., L. M. Francois, A. Probst, J. Schott, D. Moncoulon, D. Labat, and D. Viville (2006), Modelling weathering processes at the catchment scale: The WITCH numerical model, Geochim. Cosmochim. Acta, 70(5), 11281147.
  • Godderis, Y., C. Roelandt, J. Schott, M. C. Pierret, and L. M. Francois (2009), Towards an integrated model of weathering, climate, and biospheric processes, Rev. Mineral. Geochem., 70, 411434.
  • Goff, F., G. Guthrie, B. Lipin, M. Fite, D. Counce, E. Kluk, and H. Ziock (2000), Evaluation of ultramafic deposits in the eastern United States and Puerto Rico as sources of magnesium for carbon dioxide sequestration, Rep., Los Alamos National Laboratory.
  • Goldich, S. S. (1938), A study in rock-weathering, J. Geol., 46(1), 1758.
  • Golubev, S. V., and O. S. Pokrovsky (2006), Experimental study of the effect of organic ligands on diopside dissolution kinetics, Chem. Geol., 235(3–4), 377389.
  • Goodarzi, F. (2006), Characteristics and composition of fly ash from Canadian coal-fired power plants, Fuel, 85(10–11), 14181427.
  • Grace, J., et al. (1995), Carbon dioxide uptake by an undisturbed tropical rain forest in southwest Amazonia, 1992 to 1993, Science, 270(5237), 778780.
  • Green, D. H. (1964), The petrogenesis of the high-temperature peridotite intrusion in the Lizard Area, Cornwall, J. Petrol., 5(1), 134188.
  • Grisafe, D. A., E. E. Angino, and S. S. Smith (1988), Leaching characteristics of a high calcium fly ash as a function of pH: A potential source of selenium toxicity, Appl. Geochem., 3, 601608.
  • Gunning, P. J., C. D. Hills, and P. J. Carey (2010), Accelerated carbonation treatment of industrial wastes, Waste Manag., 30(6), 10811090.
  • Hamilton, J. P., S. L. Brantley, C. G. Pantano, L. J. Criscenti, and J. D. Kubicki (2001), Dissolution of nepheline, jadeite and albite glasses: Toward better models for aluminosilicate dissolution, Geochim. Cosmochim. Acta., 65(21), 36833702.
  • Hamilton, S. K., A. L. Kurzman, C. Arango, L. X. Jin, and G. P. Robertson (2007), Evidence for carbon sequestration by agricultural liming, Global Biogeochem. Cycles, 21(2), GB2021.
  • Hangx, S. J. T., and C. J. Spiers (2009), Coastal spreading of olivine to control atmospheric CO2 concentrations: A critical analysis of viability, Int. J. Greenhouse Gas Control, 3(6), 757767.
  • Harber, A. J., and R. A. Forth (2001), The contamination of former iron and steel works sites, Environ. Geol., 40(3), 324330.
  • Harley, A. D., and R. J. Gilkes (2000), Factors influencing the release of plant nutrient elements from silicate rock powders: A geochemical overview, Nutr. Cycl. Agroecosyst., 56(1), 1136.
  • Harrison, J. A., A. F. Bouwman, E. Mayorga, and S. Seitzinger (2010), Magnitudes and sources of dissolved inorganic phosphorus inputs to surface fresh waters and the coastal zone: A new global model, Global Biogeochem. Cycles, 24, GB1003.
  • Hartmann, J. (2009), Bicarbonate-fluxes and CO2 consumption by chemical weathering on the Japanese Archipelago—Application of a multi-lithological model framework, Chem. Geol., 265(3–4), 237271.
  • Hartmann, J., and S. Kempe (2008), What is the maximum potential for CO2 sequestration by “stimulated” weathering on the global scale?, Naturwissenschaften, 95, 11591164. doi:10.1007/s00114-008-0434-4.
  • Hartmann, J., and N. Moosdorf (2011), Chemical weathering rates of silicate-dominated lithological classes and associated liberation rates of phosphorus on the Japanese Archipelago—Implications for global scale analysis, Chem. Geol. http://dx.doi.org/10.1016/j.chemgeo.2010.1012.1004
  • Hartmann, J., and N. Moosdorf (2012), The new global lithological map database GLiM: A representation of rock properties at the Earth surface, Geochem. Geophys. Geosyst., 13, Q12004. doi:10.1029/2012GC004370.
  • Hartmann, J., J. K. Levy, and N. Okada (2006), Managing surface water contamination in Nagoya, Japan: An integrated water basin management decision framework, Water Resour. Manag., 20(3), 411430.
  • Hartmann, J., J. K. Levy, and S. Kempe (2011), Increasing dissolved silica trends in the Rhine River: An effect of recovery from high P loads?, Limnology, 12(1), 6373. doi:10.1007/s10201-010-0322-4, 1-11.
  • Hartmann, J., N. Jansen, H. H. Dürr, S. Kempe, and P. Köhler (2009), Global CO2 consumption by chemical weathering: What is the contribution of highly active weathering regions?, Global Planet. Change, 69(4), 185194.
  • Hartmann, J., N. Jansen, H. H. Dürr, A. Harashima, K. Okubo, and S. Kempe (2010), Predicting riverine dissolved silica fluxes to coastal zones from a hyperactive region and analysis of their first-order controls, Int. J. Earth Sci., 99(1), 207230.
  • Hartmann, J., H. H. Dürr, N. Moosdorf, S. Kempe, and M. Meybeck (2012), The geochemical composition of the terrestrial surface (without soils) and comparison with the upper continental crust, Int. J. Earth Sci., 101, 365376. http://dx.doi.org/10.1007/s005310001000635x
  • Hashimoto, S., N. Tanaka, T. Kume, N. Yoshifuji, N. Hotta, K. Tanaka, and M. Suzuki (2007), Seasonality of vertically partitioned soil CO2 production in temperate and tropical forest, J. For. Res., 12(3), 209221.
  • Hattori, T., S. Inanaga, H. Araki, P. An, S. Morita, M. Luxova, and A. Lux (2005), Application of silicon enhanced drought tolerance in Sorghum bicolor, Physiol. Plant., 123(4), 459466.
  • Hattori, T., K. Ishii, P. An, and S. Inanaga (2009), Growth enhancement of rye by silicon application under two different soil water regimes, J. Plant. Nutr., 32(2), 187196.
  • Haug, T. A., R. A. Kleiv, and I. A. Munz (2010), Investigating dissolution of mechanically activated olivine for carbonation purposes, Appl. Geochem., 25(10), 15471563.
  • Hegerl, G. C., and S. Solomon (2009), Risks of climate engineering, Science, 325(5943), 955956.
  • Hernandez, M. A., and M. Torero (2011), Fertilizer market situation—Market structure, consumption and trade patterns, and pricing behavior, Discussion Paper series IFPRI, (1058), 76.
  • Hindar, A., R. F. Wright, P. Nilsen, T. Laessen, and R. Hogberget (2003), Effects on stream water chemistry and forest vitality after whole-catchment application of dolomite to a forest ecosystem in southern Norway, For. Ecol. Manage., 180(1-3), 509525.
  • Hinsinger, P., O. N. Fernandes Barros, M. F. Benedetti, Y. Noack, and G. Callot (2001), Plant-induced weathering of a basaltic rock: Experimental evidence, Geochim. Cosmochim. Acta, 65(1), 137152.
  • Hodgkinson, E. S., and C. R. Hughes (1999), The mineralogy and geochemistry of cement/rock reactions: High-resolution studies of experimental and analogue materials, Geological Society, London, Special Publications, 157(1), 195211.
  • Holdridge, L. R. (1967), Life Zone Ecology, Tropical Science Center, San José, Calif.
  • Honjo, S., S. J. Manganini, R. A. Krishfield, and R. Francois (2008), Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: A synthesis of global sediment trap programs since 1983, Prog. Oceanogr., 76(3), 217285.
  • Houghton, R. A. (2003), Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000, Tellus B, 55(2), 378390.
  • Huber, C., R. Baier, A. Gottlein, and W. Weis (2006), Changes in soil, seepage water and needle chemistry between 1984 and 2004 after liming an N-saturated Norway spruce stand at the Hoglwald, Germany, For. Ecol. Manage., 233(1), 1120.
  • Hughes, H. J., F. Sondag, C. Cocquyt, A. Laraque, A. Pandi, L. Andre, and D. Cardinal (2011), Effect of seasonal biogenic silica variations on dissolved silicon fluxes and isotopic signatures in the Congo River, Limnol. Oceanogr., 56(2), 551561.
  • Huijgen, W. J. J., G. Witcamp, and R. Comans (2005), Mineral CO2 sequestration by steel slag carbonation, Environ. Sci. Technol., 39(24), 96769682.
  • Humborg, C., V. Ittekkot, A. Cociasu, and B. VonBodungen (1997), Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure, Nature, 386(6623), 385388.
  • Humborg, C., D. J. Conley, L. Rahm, F. Wulff, A. Cociasu, and V. Ittekkot (2000), Silicon retention in river basins: Far-reaching effects on biogeochemistry and aquatic food webs in coastal marine environments, Ambio, 29(1), 4550.
  • Huntzinger, D. N., J. S. Gierke, S. K. Kawatra, T. C. Eisele, and L. L. Sutter (2009), Carbon dioxide sequestration in cement kiln dust through mineral carbonation, Environ. Sci. Technol., 43(6), 19861992.
  • Hyvonen, R., et al. (2007), The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: A literature review, New Phytol., 173(3), 463480.
  • IMO (1996), London Convention and Protocol: Convention on the Prevention of the Marine Pollution by Dumping of Wastes and Other Matter 1972 and 1996 Protocol Thereto, edited by International Maritime Organization, London.
  • Imrie, C. E., A. Korre, G. Munoz-Melendez, I. Thornton, and S. Durucan (2008), Application of factorial kriging analysis to the FOREGS European topsoil geochemistry database, Sci. Total Environ., 393(1), 96110.
  • Institution of Mechanical Engineers (2009), Rail Freight: Getting on the Right track., Institution of Mechanical Engineers, London.
  • IPCC (2007), Climate Change 2007 - The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the IPCC, 1–996 pp.
  • IPCC (2011), Joint IPCC Expert Meeting on Geoengineering, Intergovernmental Panel on Climate Change, Lima, Peru, Retrieved March 19, 2013, from http://www.ipcc-wg2.gov/meetings/EMs/EM_GeoE_Meeting_Report_final.pdf.
  • Irvine, P. J., A. Ridgwell, and D. J. Lunt (2010), Assessing the regional disparities in geoengineering impacts, Geophys. Res. Lett., 37, L18702.
  • Irvine, P. J., A. Ridgwell, and D. J. Lunt (2011), Climatic effects of surface albedo geoengineering, J. Geophys. Res. Atmos., 116, D24112.
  • Ittekkot, V., C. Humborg, and P. Schafer (2000), Hydrological alterations and marine biogeochemistry: A silicate issue?, Bioscience, 50(9), 776782.
  • Jin, X., N. Gruber, J. P. Dunne, J. L. Sarmiento, and R. A. Armstrong (2006), Diagnosing the contribution of phytoplankton functional groups to the production and export of particulate organic carbon, CaCO3, and opal from global nutrient and alkalinity distributions, Global Biogeochem. Cycles, 20(2), GB2015.
  • Jobbagy, E. G., and R. B. Jackson (2000), The vertical distribution of soil organic carbon and its relation to climate and vegetation, Ecol. Appl., 10(2), 423436.
  • Jones, D. L., P. G. Dennis, A. G. Owen, and P. A. W. van Hees (2003), Organic acid behavior in soils - misconceptions and knowledge gaps, Plant Soil, 248(1–2), 3141.
  • Jones, L. H. P., and K. A. Handreck (1967), Silica in soils, plants, and animals, Adv. Agron., 58, 107149.
  • Jongmans, A. G., N. vanBreemen, U. Lundstrom, P. A. W. van Hees, R. D. Finlay, M. Srinivasan, T. Unestam, R. Giesler, P. A. Melkerud, and M. Olsson (1997), Rock-eating fungi, Nature, 389(6652), 682683.
  • Joshi, M., E. Hawkins, R. Sutton, J. Lowe, and D. Frame (2011), Projections of when temperature change will exceed 2° C above pre-industrial levels, Nature Clim. Change, 1(8), 407412.
  • Keeling, R. F., S. Piper, A. Bollenbacher, and J. Walker (2009), Atmospheric CO2 records from sites in the SIO air sampling network, in Trends: A compendium of data on global change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., USA.
  • Keith, D. W. (2010), Photophoretic levitation of engineered aerosols for geoengineering, Proc. Natl. Acad. Sci. U. S. A., 107(38), 1642816431.
  • Keith, D. W., E. Parson, and M. G. Morgan (2010), Research on global sun block needed now, Nature, 463(7280), 426427.
  • Kelemen, P. B., J. Matter, E. E. Streit, J. F. Rudge, W. B. Curry, and J. Blusztajn (2011), Rates and mechanisms of mineral carbonation in peridotite: Natural Processes and Recipes for Enhanced, in situ CO2 Capture and Storage, Annu. Rev. Earth Planet. Sci., Vol 39, 39, 545576.
  • Kempe, S., and E. T. Degens (1985), An early soda ocean, Chem. Geol., 53(1-2), 95108.
  • Kheshgi, H. S. (1995), Sequestering atmospheric carbon dioxide by increasing ocean alkalinity, Energy, 20(9), 915922.
  • Kintisch, E. (2010), Hack the planet. Science's best hope – or worst nightmare – for averting climate catastrophe, 288 pp., John Wileys & Sons, New Jersey.
  • Köhler, P., J. Hartmann, and D. A. Wolf-Gladrow (2010), Geoengineering potential of artificially enhanced silicate weathering of olivine, Proc. Natl. Acad. Sci. U. S. A., 107(47), 2022820233.
  • Köhler, P., J. Abrams, C. Völcker, J. Hauck, and D. A. Wolf-Gladrow (2013), Geoengineering impact of open ocean dissolution of olivine on atmospheric CO2, surface ocean pH and marine biology, Environ. Res. Lett., 8, 014009, 9pp.
  • Koltermann, K. P., V. Gouretski, and K. Jancke (2011), Hydrographic Atlas of the World Ocean Circulation Experiment (WOCE), edited by I. W. P. Office, Southampton.
  • Korndorfer, G. H., N. K. Savant, L. E. Datnoff, and G. H. Snyder (1999), Silicon nutrition and sugarcane production: A review, J. Plant. Nutr., 22(12), 18531903.
  • Kosednar-Legenstein, B., M. Dietzel, A. Leis, and K. Stingl (2008), Stable carbon and oxygen isotope investigation in historical lime mortar and plaster—Results from field and experimental study, Appl. Geochem., 23(8), 24252437.
  • Koukouzas, N., V. Gemeni, and H. J. Ziock (2009), Sequestration of CO2 in magnesium silicates, in Western Macedonia, Greece, Int. J. Miner. Process., 93(2), 179186.
  • Koukouzas, N. K., R. Zeng, V. Perdikatsis, W. Xu, and E. K. Kakaras (2006), Mineralogy and geochemistry of Greek and Chinese coal fly ash, Fuel, 85(16), 23012309.
  • Kravitz, B., A. Robock, O. Boucher, H. Schmidt, K.E. Taylor, G. Stenchikov, and M. Schulz (2011), The Geoengineering Model Intercomparison Project (GeoMIP), Atmos. Sci. Lett. 12: 162167.
  • Kreutzer, K. (1995), Effects of forest liming on soil processes, Plant Soil, 168, 447470.
  • Krevor, S., C. R. Graves, B. S. Van Gosen, and A. E. McCafferty (2009), Mapping the Mineral Resource Base for Mineral Carbon Dioxide Sequestration in the Conterminous United States, Rep., USGS.
  • Lal, R., K. Lorenz, R. F. Hüttl, B. U. Schneider, and J. von Braun (2012), Recarbonization of the Biosphere, 559 pp., Springer, Heidelberg.
  • Lampitt, R. S., et al. 2008, Ocean fertilization: A potential means of geoengineering?, Philos. Trans. R. Soc. A, 366(1882), 39193945.
  • Laruelle, G. G., et al. (2009), Anthropogenic perturbations of the silicon cycle at the global scale: Key role of the land-ocean transition, Global Biogeochem. Cycles, 23, GB4031.
  • Laruelle, G. G., H. H. Dürr, C. P. Slomp, and A. V. Borges (2010), Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially-explicit typology of estuaries and continental shelves, Geophys. Res. Lett., 37, L15607.
  • Lasaga, A. C. (1995), Fundamental approaches in describing mineral dissolution and precipitation rates, Rev. Mineral. Geochem., 31(1), 2186.
  • Lasaga, A. C., J. M. Soler, J. Ganor, T. E. Burch, and K. L. Nagy (1994), Chemical-weathering rate laws and global geochemical cycles, Geochim. Cosmochim. Acta, 58(10), 23612386.
  • Le Maitre, R. W. (1976), The chemical variability of some common igneous rocks, J. Petrol., 17(4), 589598.
  • Leake, J. R., A. L. Duran, K. E. Hardy, I. Johnson, D. J. Beerling, S. A. Banwart, and M. M. Smits (2008), Biological weathering in soil: The role of symbiotic root-associated fungi biosensing minerals and directing phiotosynthate-energy into grain-scale mineral weathering, Mineral. Mag., 72(1), 8589.
  • Lee, S., and D. A. Spears (1997), Natural weathering of pulverized fuel ash and porewater evolution, Appl. Geochem., 12, 367376.
  • Leemans, R. (1992), Global Holdridge life zone classifications, in Global Ecosystems Database Version 2.0, NOAA National Geophysical Data Center, Boulder, Col.
  • Lenton, T. M., and N. E. Vaughan (2009), The radiative forcing potential of different climate geoengineering options, Atmos. Chem. Phys., 9(15), 55395561.
  • Leonardos, O. H., W. S. Fyfe, and B. I. Kronberg (1987), The use of ground rocks in laterite systems: An improvement to the use of conventional soluble fertilizers?, Chem. Geol., 60(1-4), 361370.
  • Leonardos, O. H., S. H. Theodoro, and M. L. Assad (2000), Remineralization for sustainable agriculture: A tropical perspective from a Brazilian viewpoint, Nutr. Cycl. Agroecosyst., 56(1), 39.
  • Levy, J. K., J. Hartmann, K. W. Li, Y. B. An, and A. Asgary (2007), Multi-criteria decision support systems for flood hazard mitigation and emergency response in urban watersheds, J. Am. Water Resour. Assoc., 43(2), 346358.
  • Lowndes, I., and K. Jeffrey (2009), Optimising the efficiency of primary aggregate productionRep., pp, 74 Mineral Industry Research Organisation.
  • Ludwig, W., J. L. Probst, and S. Kempe (1996), Predicting the oceanic input of organic carbon by continental erosion, Global Biogeochem. Cycles, 10(1), 2341.
  • Ludwig, W., P. Amiotte-Suchet, G. Munhoven, and J. L. Probst (1998), Atmospheric CO2 consumption by continental erosion: Present-day controls and implications for the last glacial maximum, Global Planet. Change, 17, 107120.
  • Ma, J. F., and E. Takahashi (1990), Effect of silicon on the growth and phosphorus uptake of rice, Plant Soil, 126(1), 115119.
  • Ma, J. F. (2004), Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses, Soil Sci. Plant. Nutr., 50(1), 1118.
  • Mackenzie, F. T., and R. M. Garrels (1966), Chemical mass balance between rivers and oceans, Am. J. Sci., 264(7), 507525.
  • Macleod, G., A. E. Fallick, and A. J. Hall (1991), The mechanism of carbonate growth on concrete structures, as elucidated by carbon and oxygen isotope analyses, Chem. Geol., 86(4), 335343.
  • Maher, K. (2010), The dependence of chemical weathering rates on fluid residence time, Earth Planet. Sci. Lett., 294, 101110.
  • Manning, D. A. C. (2008), Biological enhancement of soil carbonate precipitation: Passive removal of atmospheric CO2, Mineral. Mag., 72, 639649.
  • Manning, D. A. C. (2010), Mineral sources of potassium for plant nutrition. A review, Agron. Sustain. Dev., 30(2), 281294.
  • Manning, D. A. C., and P. Renforth (2013), Passive sequestration of atmospheric CO2 through coupled plant-mineral reactions, Environ. Sci. Technol., 47, 135141. doi:10.1021/es301250j
  • Marland, G., T. Boden, and R. J. Andres (2005), Global, regional and national CO2 emissions, in Trends: A compendium of data on global change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., USA.
  • Martin, P., R. S. Lampitt, M. J. Perry, R. Sanders, C. Lee, and E. D'Asaro (2011), Export and mesopelagic particle flux during a North Atlantic spring diatom bloom, Deep Sea Res. Part I, 58(4), 338349.
  • Matichenkov, V. V., and E. A. Bocharnikova (2001), The relationship between silicon and soil physical and chemical properties, in Silicon in agriculture, edited, pp. 209219, Elsevier, Amsterdam.
  • Max Planck Institute for Chemistry. (2006), Geochemistry of rocks of the oceans and continents, GEOROC.
  • Mayes, W., P. Younger, and J. Aumônier (2008), Hydrogeochemistry of alkaline steel slag leachates in the UK, Water Air Soil Pollut., 195(1), 3550.
  • Mayes, W. M., A. R. G. Large, and P. L. Younger (2005), The impact of pumped water from a de-watered Magnesian limestone quarry on an adjacent wetland, Thrislington, County Durham, UK, Environ. Pollut., 138(3), 443454.
  • Mayes, W. M., P. L. Younger, and J. Aumonier (2006), Buffering of alkaline steel slag leachate across a natural wetland, Environ. Sci. Technol., 40(4), 12371243.
  • Mayorga, E. (2008), Carbon cycle—Harvest of the century, Nature, 451(7177), 405406.
  • Mayorga, E., S. P. Seitzinger, J. A. Harrison, E. Dumont, A. H. W. Beusen, A. F. Bouwman, B. M. Fekete, C. Kroeze, and G. Van Drecht (2010), Global Nutrient Export from WaterSheds 2 (NEWS 2): Model development and implementation, Environ. Modell. Softw., 25(7), 837853.
  • McCarroll, D., and H. Viles (1995), Rock-weathering by the lichen Lecidea auriculata in an arctic alpine environment, Earth Surf. Processes Landforms, 20(3), 199206.
  • McKinnon, A. C., and M. I. Piecyk (2009), Measurement of CO2 emissions from road freight transport: A review of UK experience, Energy Policy, 37(10), 37333742.
  • McKinnon, A. C., and M. Piecyk (2010), Measuring and Managing CO2 Emissions in European Chemical Transport, Cefic, Brussels.
  • Meinshausen, M, S. J. Smith, K. Calvin, J. S. Daniel, M. L. T. Kainuma, J.-F. Lamarque, K. Matsumoto, S. A. Montzka, S. C. B. Raper, K. Riahi, A. Thomson, G. J. M. Velders, D. P. P. van Vuuren. (2011), The RCP greenhouse gas concentrations and their extensions from 1765 to 2300, Clim. Chang. (2011) 109:213241
  • Meunier, J. D., F. Colin, and C. Alarcon (1999), Biogenic silica storage in soils, Geology, 27(9), 835838.
  • Meybeck, M. (1998), The IGBP water group: A response to a growing global concern, Global Change Newsl., 36, 812.
  • Meybeck, M., H. H. Dürr, S. Roussennac, and W. Ludwig (2007), Regional seas and their interception of riverine fluxes to oceans, Mar. Chem., 106 (Wollast Memorial Special Issue), 301325.
  • Moore, J. C., S. Jevrejeva, and A. Grinsted (2010), Efficacy of geoengineering to limit 21st century sea-level rise, Proc. Natl. Acad. Sci. U. S. A., 107(36), 1569915703.
  • Moosdorf, N., J. Hartmann, R. Lauerwald, B. Hagedorn, and S. Kempe (2011), Atmospheric CO2 consumption by chemical weathering in North America, Geochim. Cosmochim. Acta, 75(24), 78297854.
  • Morgan, G. M., and K. Ricke (2009), Cooling the Earth through solar radiation management: The need for research and an approach to its governance, International Risk Governance Council (IRGC), Carnegie Mellon University. Retrieved March 19, 2013, from http://www.irgc.org/IMG/pdf/SRM_Opinion_Piece_web.pdf.
  • Morse, J. W., Q. W. Wang, and M. Y. Tsio (1997), Influences of temperature and Mg:Ca ratio on CaCO3 precipitates from seawater, Geology, 25(1), 8587.
  • Morse, J. W., R. S. Arvidson, and A. Luttge (2007), Calcium carbonate formation and dissolution, Chem. Rev., 107(2), 342381.
  • Moulton, K. L., J. West, and R. A. Berner (2002), Solute flux and mineral mass balance approaches to the quantification of plant effects on silicate weathering, Am. J. Sci., 300(7), 539570.
  • Nakicenovic, N., and R. Swart (2000), Special report on emission scenarios, Cambridge Univ. Press, Cambridge.
  • Nanayakkara, U. N., W. Uddin, and L. E. Datnoff (2008), Application of silicon sources increases silicon accumulation in perennial ryegrass turf on two soil types, Plant Soil, 303(1–2), 8394.
  • Nelson, D. M., P. Treguer, M. A. Brzezinski, A. Leynaert, and B. Queguiner (1995), Production and dissolution of biogenic silica in the ocean—Revised global estimates, comparison with regional data and relationship to biogenic sedimentation, Global Biogeochem. Cycles, 9(3), 359372.
  • Nelson, D. M., and Q. Dortch (1996), Silicic acid depletion and silicon limitation in the plume of the Mississippi River: Evidence from kinetic studies in spring and summer, Mar. Ecol. Prog. Ser., 136(1–3), 163178.
  • NERC (2011), Experiment Earth? Natural Environment Research Council, Report on a public dialogue on geoengineering, Retrieved March 19, 2013 from http://www.ipsos-mori.com/DownloadPublication/1376_sri_experiment-earth-report-on-a--public-dialogue-on-geoengineering_sept2010.pdf.
  • Nkouathio, D. G., P. Wandji, J. M. Bardintzeff, P. Tematio, A. Kagou Dongmo, and F. Tchoua (2008), Utilisation des roches volcaniques pour la reminéralisation des sols ferrallitiques des régions tropicales. Cas des pyroclastites basaltiques du graben de Tombel (Ligne volcanique du Cameroun), Bull. Soc. Vaudoise Sci. Nat., 91, 114.
  • O'Connor, W. K., D. C. Dahlin, G. E. Rush, S. J. Gedermann, L. R. Penner, and D. N. Nilsen (2005), Aqueous mineral carbonation, Final Report - DOE/ARC-TR-04-002Rep.
  • O'Halloran, T. L., et al. (2012), Radiative forcing of natural forest disturbances, Global Change Biol., 18(2), 555565.
  • Oelkers, E. H. (2001), General kinetic description of multioxide silicate mineral and glass dissolution, Geochim. Cosmochim. Acta, 65(21), 37033719.
  • Oelkers, E. H., and S. R. Gislason (2001), The mechanism, rates and consequences of basaltic glass dissolution: I. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si and oxalic acid concentration at 25 °C and pH = 3 and 11, Geochim. Cosmochim. Acta, 65(21), 36713681.
  • Oelkers, E. H., S. R. Gislason, and J. Matter (2008), Mineral carbonation of CO2, Elements, 4(5), 333337.
  • Oh, N. H., and P. A. Raymond (2006), Contribution of agricultural liming to riverine bicarbonate export and CO2 sequestration in the Ohio River basin, Global Biogeochem. Cycles, 20(3), GB3012.
  • Oschlies, A., M. Pahlow, A. Yool, and R. J. Matear (2010), Climate engineering by artificial ocean upwelling: Channelling the sorcerer's apprentice, Geophys. Res. Lett., 37, L04701.
  • Paces, T. (1983), Rate constants of dissolution derived from the measurements of mass balance in hydrological catchments, Geochim. Cosmochim. Acta, 47(11), 18551863.
  • Pagani, M., K. Caldeira, R. Berner, and D. J. Beerling (2009), The role of terrestrial plants in limiting atmospheric CO2 decline over the past 24 million years, Nature, 460(7251), 8588.
  • Palandri, J. L., and Y. K. Kharaka (2004), A complitation of rate parameters of water-mineral interaction kinetics for application to geochemical modelling, Rep., United States Geological Survey.
  • Parkhill, K., and N. Pidgeon (2011), Public Engagement on Geoengineering Research, Preliminary Report on the SPICE Deliberative Workshops. Understanding Risk Working (2011–11), 29.
  • Parsons, M. B., D. K. Bird, M. T. Einaudi, and C. N. Alpers (2001), Geochemical and mineralogical controls on trace element release from the Penn Mine base-metal slag dump, California, Appl. Geochem., 16(14), 15671593.
  • Perrin, A. S., A. Probst, and J. L. Probst (2008), Impact of nitrogenous fertilizers on carbonate dissolution in small agricultural catchments: Implications for weathering CO2 uptake at regional and global scales, Geochim. Cosmochim. Acta, 72(13), 31053123.
  • Peters, G. P., G. Marland, C. Le Quere, T. Boden, J. G. Canadell, and M. R. Raupach (2012), Rapid growth in CO2 emissions after the 2008–2009 global financial crisis, Nature. Clim. Change, 2(1), 24.
  • Phillips, O. L., et al. (1998), Changes in the carbon balance of tropical forests: Evidence from long-term plots, Science, 282(5388), 439442.
  • Pierson-Wickmann, A. C., L. Aquilina, C. Martin, L. Ruiz, J. Molenat, A. Jaffrezic, and C. Gascuel-Odoux (2009), High chemical weathering rates in first-order granitic catchments induced by agricultural stress, Chem. Geol., 265(3–4), 369380.
  • Plate, E. J. (2002), Flood risk and flood management, J. Hydrol., 267(1–2), 211.
  • Pokrovsky, O. S., and J. Schott (2000), Kinetics and mechanism of forsterite dissolution at 25°C and pH from 1 to 12, Geochim. Cosmochim. Acta, 64(19), 33133325.
  • Pongratz, J., D. B. Lobell, L. Cao, and K. Caldeira (2012), Crop yields in a geoengineered climate, Nature. Clim. Change, 2(2), 101105.
  • Proelss, A., and K. Güssow (2011), Climate Engineering - Instrumente und Institutionen des internationalen Rechts, Report, 99 pp, Kiel.
  • Ragsdale, S. W. (2009), Nickel-based Enzyme Systems, J. Biol. Chem., 284, 1857118575.
  • Ragueneau, O., et al. (2000), A review of the Si cycle in the modem ocean: Recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy, Global Planet. Change, 26(4), 317365.
  • Ragueneau, O., S. Schultes, K. Bidle, P. Claquin, and B. La Moriceau (2006), Si and C interactions in the world ocean: Importance of ecological processes and implications for the role of diatoms in the biological pump, Global Biogeochem. Cycles, 20(4), GB4502.
  • Ragueneau, O., A. Regaudie-de-Gioux, B. Moriceau, M. Gallinari, A. Vangriesheim, F. Baurand, and A. Khripounoff (2009), A benthic Si mass balance on the Congo margin: Origin of the 4000 m DSi anomaly and implications for the transfer of Si from land to ocean, Deep Sea Res. Part II, 56(23), 21972207.
  • Ragueneau, O., D. J. Conley, D. J. DeMaster, H.H. Dürr, N. Dittert (2010), Biogeochemical cycle of silicon on continental margins: Transformations along the land-ocean continuum and implications for the global carbon cycle, in, Carbon and Nutrient Fluxes in Global Continental Margins, Global Change – The IGBP Ser., edited by K. K Liu, L. Atkison, R. Quiñones, and L. Talaue-McManus, pp. 515527, Springer–Verlag Berlin Heidelberg Germany.
  • Rawlins, C. H., K. D. Peaslee, and V. Richards (2008), Feasibility of processing steelmaking slag for carbon dioxide sequestration and metal recovery, Association for Iron & Steel Technology AIST.
  • Raymond, P. A., N.-H. Oh, R. E. Turner, and W. Broussard (2008), Anthropogenically enhanced fluxes of water and carbon from the Mississippi River, Nature, 451(7177), 449452.
  • Rayner, S., C. Redgwell, J. Savulescu, N. Pidgeon, and T. Kruger (2009), Memorandum on draft principles for the conduct of geoengineering research. House of Commons Science and Technology Committee, The Regulation of Geoengineering, retrieved March 19, 2013 from www.publications.parliament.uk/pa/cm200910/cmselect/cmsctech/221/221.pdf.
  • Renforth, P. (2012), The potential of enhanced weathering in the UK, Int. J. Greenhouse Gas Control, 10, 229243
  • Renforth, P., and T. Kruger (2013), Coupling mineral carbonation and ocean liming, Energy Fuels, doi:10.1021/ef302030w.
  • Renforth, P., and D. A. C. Manning (2011), Laboratory carbonation of artificial silicate gels enhanced by citrate: Implications for engineered pedogenic carbonate formation, Int. J. Greenhouse Gas Control, 5(6), 15781586.
  • Renforth, P., D. A. C. Manning, and E. Lopez-Capel (2009), Carbonate precipitation in artificial soils as a sink for atmospheric carbon dioxide, Appl. Geochem., 24, 17571764.
  • Renforth, P., C. L. Washbourne, J. Taylder, and D. A. C. Manning (2011), Silicate Production and Availability for Mineral Carbonation, Environ. Sci. Technol., 45(6), 20352041.
  • Ricke, K. L., G. Morgan, and M. R. Allen (2010), Regional climate response to solar-radiation management, Nature. Geosci., 3(8), 537541.
  • Ricke, W. (1960), Ein Beitrag zur Geochemie des Schwefels, Geochim. Cosmochim. Acta, 21(1-2), 3580.
  • Rickels, W., et al. (2011), Gezielte Eingriffe in das Klima? Eine Bestandsaufnahme der Debatte zu Climate Engineering. Sondierungsstudie für das Bundesministerium für Bildung und Forschung.
  • Roadcap, G. S., W. B. Kelly, and C. M. Bethke (2005), Geochemistry of extremely alkaline (pH > 12) ground water in slag fill aquifers, Ground Water, 43(6), 806816.
  • Robock, A., A. Marquardt, B. Kravitz, and G. Stenchikov (2009), Benefits, risks, and costs of stratospheric geoengineering, Geophys. Res. Lett., 36, L19703.
  • Robock, A., M. Bunzl, B. Kravitz, and G. L. Stenchikov (2010), A test for geoengineering?, Science, 327(5965), 530531.
  • Rogelj, J., W. Hare, J. Lowe, D. P. van Vuuren, K. Riahi, B. Matthews, T. Hanaoka, K. J. Jiang, and M. Meinshausen (2011), Emission pathways consistent with a 2 °C global temperature limit, Nature. Clim. Change, 1(8), 413418.
  • Rosenberg, D. M., P. McCully, and C. M. Pringle (2000), Global-scale environmental effects of hydrological alterations: Introduction, Bioscience, 50(9), 746751.
  • Rosso, J. J., and J. D. Rimstidt (2000), A high resolution study of forsterite dissolution rates, Geochim. Cosmochim. Acta, 64(5), 797811.
  • Rost, B., I. Zondervan, and D. Wolf-Gladrow (2008), Sensitivity of phytoplankton to future changes in ocean carbonate chemistry: Current knowledge, contradictions and research directions, Mar. Ecol. Prog. Ser., 373, 227237.
  • Roth, J. (1878), Flusswasser, Meerwasser, Steinsalz, pp. 1–36 Verlag von Carl Habel, Berlin.
  • Roth, J. (1879), Allgemeine und Chemische Geologie, Erster Band - Bildung und Umbildung der Mineralien. Quell-, Fluss- und Meerwasser. Die Absätze, 1–634 pp., Verlag von Wilhelm Hertz (Bessersche Buchhandlung), Berlin.
  • Roth, J. (1893), Allgemeine und Chemische Geologie, Dritter Band - Zweite Abteilung: Verwitterung, Zersetzung und Zerstörung der Gesteine, 1–530 pp., Verlag von Wilhelm Hertz (Bessersche Buchhandlung), Berlin.
  • Rundle, S. D., N. S. Weatherley, and S. J. Ormerod (1995), The Effects of Catchment Liming on the Chemistry and Biology of Upland Welsh Streams - Testing Model Predictions, Freshwater Biol., 34(1), 165175.
  • Ryskov, Y. G., V. A. Demkin, S. A. Oleynik, and E. A. Ryskova (2008), Dynamics of pedogenic carbonate for the last 5000 years and its role as a buffer reservoir for atmospheric carbon dioxide in soils of Russia, Global Planet. Change, 61(1–2), 6369.
  • Sarmiento, J. L., J. Simeon, A. Gnanadesikan, N. Gruber, R. M. Key, and R. Schlitzer (2007), Deep ocean biogeochemistry of silicic acid and nitrate, Global Biogeochem. Cycles, 21(1), GB1590.
  • Savant, N. K., L. E. Datnoff, and G. H. Snyder (1997a), Depletion of plant-available silicon in soils: A possible cause of declining rice yields, Commun. Soil Sci. Plant, 28(13–14), 12451252.
  • Savant, N. K., G. H. Snyder, and L. E. Datnoff (1997b), Silicon management and sustainable rice production, Adv. Agron., 58, 151199.
  • Scheffran, J. (2006), Tools in Stakeholder Assessment and Interaction, in Stakeholder dialogues in natural resources management and integrated assessments: Theory and practice, edited by S. Stoll-Kleemann, and M. Welp, pp. 153185, Springer, Berlin.
  • Schmidt, H., K. Alterskjær, D. Bou Karam, O. Boucher, A. Jones, J. E. Kristjansson, U. Niemeier, M. Schulz, A. Aaheim, F. Benduhn, M. Lawrence, and C. Timmreck (2012), Solar irradiance reduction to counteract radiative forcing from a quadrupling of CO2: climate responses simulated by four earth system models, Earth Syst. Dynam., 3, 6378.
  • Schneider, S. H. (2008), Geoengineering: could we or should we make it work? Philos. T R Soc. A, 366, 38433862.
  • Schopka, H. H., L. A. Derry, and C. A. Arcilla (2011), Chemical weathering, river geochemistry and atmospheric carbon fluxes from volcanic and ultramafic regions on Luzon Island, the Philippines. Geochim. Cosmochim. Acta, 75(4), 9781002.
  • Schuiling, R. D., and P. Krijgsman (2006), Enhanced weathering: An effective and cheap tool to sequester CO2, Clim. Change, 74(1-3), 349354.
  • Schuiling, R. D., and P. L. de Boer (2010), Coastal spreading of olivine to control atmospheric CO2 concentrations: A critical analysis of viability. Comment: Nature and laboratory models are different, Int. J. Greenhouse Gas Control, 4(5), 855856.
  • Schuiling, R. D., and P. L. de Boer (2011), Rolling stones; fast weathering of olivine in shallow seas for cost-effective CO2 capture and mitigation of global warming and ocean acidification Earth Syst. Dyn. Disc., 2, 551568.
  • Schuiling, R. D., S. A. Wilson, and I. M. Power (2011), Enhanced silicate weathering is not limited by silicic acid saturation, Proc. Natl. Acad. Sci. U. S. A., 108(12), E41.
  • Scrivener, K. L., T. Füllmann, E. Gallucci, G. Walenta, and E. Bermejo (2004), Quantitative study of Portland cement hydration by X-ray diffraction/Rietveld analysis and independent methods, Cem. Concr. Res., 34(9), 15411547.
  • Semhi, K., P. A. Suchet, N. Clauer, and J. L. Probst (2000), Impact of nitrogen fertilizers on the natural weathering-erosion processes and fluvial transport in the Garonne basin, Appl. Geochem., 15(6), 865878.
  • Shaw, S., S. M. Clark, and C. M. B. Henderson (2000a), Hydrothermal formation of the calcium silicate hydrates, tobermorite (Ca5Si6O16(OH)2 4H2O) and xonotlite (Ca6Si6O17(OH)2): An in situ synchrotron study, Chem. Geol., 167(1-2), 129140.
  • Shaw, S., C. M. B. Henderson, and B. U. Komanschek (2000b), Dehydration/recrystallization mechanisms, energetics, and kinetics of hydrated calcium silicate minerals: An in situ TGA/DSC and synchrotron radiation SAXS/WAXS study, Chem. Geol., 167(1-2), 141159.
  • Shidawara, M. (1999), Hazard map distribution, Urban Waters, 1, 125129.
  • Shipe, R. F., and M. A. Brzezinski (2001), A time series study of silica production and flux in an eastern boundary region: Santa Barbara Basin, California, Global Biogeochem. Cycles, 15(2), 517531.
  • Shipe, R. F., J. Curtaz, A. Subramaniam, E. J. Carpenter, and D. G. Capone (2006), Diatom biomass and productivity in oceanic and plume-influenced waters of the western tropical Atlantic Ocean, Deep Sea Res. Part I, 53(8), 13201334.
  • Sobanska, S., B. Ledésert, D. Deneele, and A. Laboudigue (2000), Alteration in soils of slag particles resulting from lead smelting, C. R. Acad. Sci., Ser. IIa: Sci. Terre Planetes, 331(4), 271278.
  • Solomon, S., G. K. Plattner, R. Knutti, and P. Friedlingstein (2009), Irreversible climate change due to carbon dioxide emissions, Proc. Natl. Acad. Sci. U. S. A., 106(6), 17041709.
  • Sommer, M., D. Kaczorek, Y. Kuzyakov, and J. Breuer (2006), Silicon pools and fluxes in soils and landscapes—A review, J. Plant Nutr. Soil Sci., 169(3), 310329.
  • Stallard, R. F., and J. M. Edmond (1983), Geochemistry of the Amazon: 2. The influence of geology and weathering environment on the dissolved-load, J. Geophys. Res., 88(C14), 96719688.
  • Stallard, R. F., and J. M. Edmond (1987), Geochemistry of the Amazon: 3. Weathering chemistry and limits to dissolved inputs, J. Geophys. Res., 92(C8), 82938302.
  • Stamboliadis, E., O. Pantelaki, and E. Petrakis (2009), Surface area production during grinding, Miner. Eng., 22(7–8), 587592.
  • Street-Perrott, F. A., and P. A. Barker (2008), Biogenic silica: A neglected component of the coupled global continental biogeochemical cycles of carbon and silicon, Earth Surf. Processes Landforms, 33(9), 14361457.
  • STC (2009), The regulation of geoengineering. Fifth report to the House of Commons. Session 2009–10.
  • Taylor, L. L., J. R. Leake, J. Quirk, K. Hardy, S. A. Banwart, and D. J. Beerling (2009), Biological weathering and the long-term carbon cycle: Integrating mycorrhizal evolution and function into the current paradigm, Geobiology, 7(2), 171191.
  • Taylor, S. R. (1964), Abundance of chemical elements in the continental crust—A new table, Geochim. Cosmochim. Acta, 28, 12731285.
  • ten Berge, H. F. M., H. G. van der Meer, J. W. Steenhuizen, P. W. Goedhart, P. Knops, and J. Verhagen (2012), Olivine weathering in soil, and its effects on growth and nutrient uptake in ryegrass (Lolium perenne L.): A pot experiment, PLoS ONE, 7(8), e42098.
  • Treguer, P., and C. L. De La Rocha (2013), The world ocean silica cycle, Annu. Rev. Mar. Sci. 5, 477501.
  • Treguer, P., D. M. Nelson, A. J. Van Bennekom, D. J. De Master, A. Leynaert, and B. Queguiner (1995), The silica balance in the world ocean—A reestimate, Science, 268(5209), 375379.
  • Tripler, C. E., S. S. Kaushal, G. E. Likens, and M. T. Walter (2006), Patterns in potassium dynamics in forest ecosystems, Ecol. Lett., 9(4), 451466.
  • Turner, J. T. (2002), Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms, Aquat. Microb. Ecol., 27(1), 57102.
  • Turner, R. E., and N. N. Rabalais (1994), Coastal Eutrophication near the Mississippi River Delta, Nature, 368(6472), 619621.
  • UBA (2011), Geo-Engineering: effective climate protection or megalomania? Umweltbundesamt, Dessau.
  • UK Royal Society (2009), Geoengineering the climate: Science, governance and uncertainty, The Royal Society, London, UK.
  • UNCTAD (2011), Review of maritime transport, 233, www.unctad.org/en/Docs/rmt2011_en.pdf.
  • van Ast, J. A., and S. P. Boot (2003), Participation in European water policy, Phys. Chem. Earth, 28(12–13), 555562.
  • Van Breemen, N., R. Finlay, U. Lundstrom, A. G. Jongmans, R. Giesler, and M. Olsson (2000), Mycorrhizal weathering: A true case of mineral plant nutrition ?, Biogeochemistry, 49(1), 5367.
  • van Straaten, P. (2002), Rocks for Crops: Agrominerals of sub-Saharan Africa, 338 pp., ICRAF, Nairobi, Kenya.
  • Van Cappellen, P., and L. Q. Qiu (1997a), Biogenic silica dissolution in sediments of the Southern Ocean: 2. Kinetics, Deep Sea Res. Part II, 44(5), 11291149.
  • Van Cappellen, P., and L. Q. Qiu (1997b), Biogenic silica dissolution in sediments of the Southern Ocean. 1. Solubility, Deep Sea Res. Part II, 44(5), 11091128.
  • Volk, T., and M. I. Hoffert (1985), Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes, in The Carbon Cycle and Atmospheric CO2: Natural Variations—Archean to Present, in Geophysical Monographie Series, edited by E. T. Sundquist and W. S. Broecker, pp. 99110, AGU, Washington.
  • Von Fragstein, P., W. Pertl, and H. Vogtmann (1988), Artificial weathering of silicate rock powders, Z. Pflanzenernaehr. Bodenk. 151, 141146.
  • Vondamm, K. L., J. M. Edmond, B. Grant, and C. I. Measures (1985), Chemistry of submarine hydrothermal solutions at 21°N, East Pacific Rise, Geochim. Cosmochim. Acta, 49(11), 21972220.
  • Vörösmarty, C. J., and D. Sahagian (2000), Anthropogenic disturbance of the terrestrial water cycle, Bioscience, 50(9), 753765.
  • Walker, J., P. B. Hays, and J. F. Kasting (1981), A negative feedback mechanism for the long-term stabilization of Earth's surface temperature, J. Geophys. Res., 86(C10), 97769782.
  • Walthall, J. H., and G.L. Bridger (1943), Fertilizer by fusion of rock phosphate with olivine, Ind. Eng. Chem. Res., 35(7), 774777.
  • Wang, J., and N. Naser (1994), Improved performance of carbon-paste amperometric biosensors through the incorporation of fumed silica, Electroanalysis, 6(7), 571575.
  • Wang, Y., and E. Forssberg (2003), International overview and outlook on comminution technology, Rep., Lulea Tekniska Universitet: Avdelningen for Mineralteknik.
  • West, A. J. (2012), Thickness of the chemical weathering zone and implications for erosional and climatic drivers of weathering and for carbon-cycle feedbacks, Geology, 40(9), 811814.
  • West, A. J., A. Galy, and M. Bickle (2005), Tectonic and climatic controls on silicate weathering, Earth Planet. Sci. Lett., 235(1–2), 211228.
  • Wheat, C. G., and M. J. Mottl (2000), Composition of pore and spring waters from Baby Bare: Global implications of geochemical fluxes from a ridge flank hydrothermal system, Geochim. Cosmochim. Acta, 64(4), 629642.
  • White, A. F., and A. E. Blum (1995), Effects of climate on chemical-weathering in watersheds, Geochim. Cosmochim. Acta, 59(9), 17291747.
  • Wilding, L. P., and L. R. Drees (1974), Contributions of forest opal and associated crystalline phases to fine silt and clay fractions of soils, Clays Clay Miner., 22, 295306.
  • Wilson, S. A., G. M. Dipple, I. A. Power, J. M. Thom, R. G. Anderson, M. Raudsepp, J. E. Gabites, and G. Southam (2009), Carbon dioxide fixation within mine wastes of ultramafic-hosted ore deposits: Examples from the Clinton Creek and Cassiar Chrysotile deposits, Canada, Econ. Geol., 104(1), 95112.
  • Wilson, S. A., S. L. L. Barker, G. M. Dipple, and V. Atudorei (2010), Isotopic disequilibrium during uptake of atmospheric CO2 into mine process waters: Implications for CO2 sequestration, Environ. Sci. Technol., 44(24), 95229529.
  • Wogelius, R. A., and J. V. Walther (1991), Olivine dissolution at 25C: Effects of pH, CO2, and organic acids, Geochim. Cosmochim. Acta, 55(4), 943954.
  • Wolf-Gladrow, D. A., R. E. Zeebe, C. Klaas, A. Körtzinger, and A. G. Dickson (2007), Total alkalinity: The explicit conservative expression and its application to biogeochemical processes, Mar. Chem., 106(1–2), 287300.
  • Woods, S., C. J. Mitchell, D. J. Harrison, N. Ghazireh, and D. A. C. Manning (2004), Exploitation and use of quarry fines: A preliminary report, Int. J.Pavement Eng. Asphalt Technol., 5, 5462.
  • Yoshida, S., Y. Ohuishi, and K. Kitagishi (1962), Chemical forms, mobility and deposition of silicon in rice plant, Soil Sci. Plant Nutr., 8, 107113.
  • Zeebe, R. E., and D. Wolf-Gladrow (2001), CO2 in Seawater: Equilibrium, Kinetics, Isotopes, Elsevier, Amsterdam.
  • Zeebe, R. E., and K. Caldeira (2008), Close mass balance of long-term carbon fluxes from ice core CO2 and ocean chemistry records, Nature. Geosci., 1(5), 312315.
  • Zwieniecki, M. A., P. J. Melcher, and N. M. Holbrook (2001), Hydrogel control of xylem hydraulic resistance in plants, Science, 291(5506), 10591062.