SEARCH

SEARCH BY CITATION

References

  • Albertella, A., and F. Sacerdote (1995), Spectral analysis of block averaged data in geopotential global model determination, J. Geod., 70(3), 166175, doi:10.1007/BF00943692.
  • Andersen, O. A., P. Knudsen, and P. A. M. Berry (2010), The DNSC08GRA global marine gravity field from double retracked satellite altimetry, J. Geod., 84(3), 191199, doi:10.1007/s00190-009-0355-9.
  • Bassin, C., G. Laske, and T. G. Masters (2000), The current limits of resolution for surface wave tomography in North America, Eos Trans. AGU, 81(48), Fall Meet. Suppl., F897.
  • Beutler, G., A. Jäggi, L. Mervart, and U. Meyer (2010a), The celestial mechanics approach: Theoretical foundations, J. Geod., 84(10), 605624, doi:10.1007/s00190-010-0401-7.
  • Beutler, G., A. Jäggi, L. Mervart, and U. Meyer (2010b), The celestial mechanics approach: Application to data of the GRACE mission, J. Geod., 84(11), 661681, doi:10.1007/s00190-010-0402-6.
  • Biancale, R., et al. (2000), A new global Earth's gravity field model from satellite orbit perturbations: GRIM5-S1, Geophys. Res. Lett., 27(22), 36113614, doi:10.1029/2000GL011721.
  • Bouman, J., and M. Fuchs (2012), GOCE gravity gradients versus global gravity field models, Geophys. J. Int., 189(2), 846850, doi:10.1111/j.1365-246X.2012.05428.x.
  • Bouman, J., and R. Koop (1998), Regularization in gradiometric analysis, Phys. Chem. Earth, 23(1), 4146, doi:10.1016/S0079-1946(97)00239-5.
  • Blakely, R. J. (1996), Potential Theory in Gravity and Magnetic Applications, Cambridge Univ. Press, New York.
  • Bruinsma, S. L., J.-C. Marty, G. Balmino, R. Biancale, C. Förste, O. Abrikosov, and H. Neumayer (2010), GOCE gravity field recovery by means of the direct numerical method, in Proceedings of the ESA Living Planet Symposium, edited by H. Lacoste-Francis, ESA Publ., SP-686, ESA/ESTEC, Nordwijk, The Netherlands, ISBN:978-92-9221-250-6, ISSN:1609-042X.
  • Bruinsma, S., J.-C. Marty, G. Balmino, C. Förste, O. Abrikosov, and H. Neumayer (2011), A GOCE-only gravity field model inferred from 6.7 months of data using the direct numerical method, Geophys. Res. Abstr., 13, EGU2011-5850.
  • Claessens, S. J. (2003), A Synthetic Earth Model: Analysis, Implementation, Validation and Application, 66 pp., Delft Univ. Press, Delft, The Netherlands, ISBN:978-90-407-2363-6.
  • Ditmar, P., J. Kusche, and R. Klees (2003), Computation of spherical harmonic coefficients from gravity gradiometry data to be acquired by the GOCE satellite: Regularization issues, J. Geod., 77(7–8), 465477, doi:10.1007/s00190-003-0349-y.
  • Drinkwater, M., R. Haagmans, D. Muzi, A. Popescu, R. Floberghagen, M. Kern, and M. Fehringer (2007), The GOCE gravity mission: ESA's first core Earth explorer, in Proceedings of 3rd International GOCE User Workshop, edited by K. Fletcher, pp. 18, ESA Publ., SP-627, ESA/ESTEC, Nordwijk, The Netherlands, ISBN:978-92-9092-938-3, ISSN:1609-042X.
  • ESA (1999), Gravity Field and Steady-State Ocean Circulation Explorer, Reports for Assessment: The Four Candidate Earth Explorer Missions, ESA SP-1233(1), 217 pp., ESA Publications Division, ESTEC, Nordwijk.
  • Flechtner, F., C. Dahle, K. H. Neumayer, R. König, and C. Förste (2010), The release 04 CHAMP and GRACE EIGEN gravity field models, in Adv. Technol in Earth Sci., System Earth via Geodetic-Geophysical Space Techniques, edited by F. Flechtner et al., pp. 4158, Springer, Berlin-Heidelberg, doi:10.1007/978-3-642-10228-8_4.
  • Förste, C., et al. (2008), EIGEN-GL05C—A new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation, Geophys. Res. Abstr., 10, EGU2008-A-03426.
  • Frommknecht, B., D. Lamarre, M. Meloni, A. Bigazzi, and R. Floberghagen (2011), GOCE level 1b data processing, J. Geod., 85(11), 759775, doi:10.1007/s00190-011-0497-4.
  • Gerlach, C., et al. (2003), A CHAMP-only gravity field model from kinematic orbits using the energy integral, Geophys. Res. Lett., 30(20), 2037, doi:10.1029/2003GL018025.
  • Gerstl, M. (1980), On the recursive computation of the integrals of the associated Legendre functions, Manuscr. Geod., 5, 181199.
  • Goiginger, H., et al. (2011), The combined satellite-only global gravity field model GOCO02S, Geophys. Res. Abstr., 13, EGU2011-10571.
  • Göttl, F., and R. Rummel (2009), A geodetic view on isostatic models, Pure Appl. Geophys., 166(8–9), 12471260, doi:10.1007/s00024-004-0489-x.
  • Gruber, T., A. Bode, C. Reigber, P. Schwintzer, G. Balmino, R. Biancale, and J.-M. Lemoine (2000), GRIM5-C1: Combination solution of the global gravity field to degree and order 120, Geophys. Res. Lett. 27(24), 40054008, doi:10.1029/2000GL011589.
  • Gruber, T., P. N. A. M. Visser, C. Ackermann, and M. Hosse (2011) Validation of GOCE gravity field models by means of orbit residuals and geoid comparisons, J. Geod., 85(11), 845860, doi:10.1007/s00190-011-0486-7.
  • Haagmans, R. (2000), A synthetic Earth for use in geodesy, J. Geod., 74(7–8), 503511, doi:10.1007/s001900000112.
  • Hackney, R. I., and W. E. Featherstone (2003), Geodetic versus geophysical perspectives of the ‘gravity anomaly’, Geophys. J. Int., 154(1), 3543, doi:10.1046/j.1365-246X.2003.01941.x.
  • Han, S.-C., J. Sauber, S. B. Luthcke, C. Ji, and F. F. Pollitz (2008) Implications of postseismic gravity change following the great 2004 Sumatra-Andaman earthquake from the regional harmonic analysis of GRACE intersatellite tracking data, J. Geophys. Res., 113, B11413, doi:10.1029/2008JB005705.
  • Heiskanen, W. A., and H. Moritz (1967), Physical Geodesy, W. H. Freeman and Co., San Francisco, Calif.
  • Jäggi, A., L. Prange, U. Meyer, L. Mervart, G. Beutler, T. Gruber, R. Dach, and R. Pail (2010), Gravity field determination at AIUB: From annual to multi-annual solutions, Geophys. Res. Abstr., 12, EGU2010-5842.
  • Kaban, M. K., P. Schwintzer, and S. A. Tikhotsky (1999), A global isostatic gravity model of the Earth, Geophys. J. Int., 136(3), 519536, doi:10.1046/j.1365-246x.1999.00731.x.
  • Kaula, W. M. (1966), Theory of Satellite Geodesy, Blaisdell Publ. Co., Waltham, Mass.
  • Lemoine, F. G., et al. (1998), The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96, NASA Technical Paper, NASA/TP-1998-206861, Goddard Space Flight Center, Greenbelt, USA.
  • Luthcke, S. B., A. A. Arendt, D. D. Rowlands, J. J. McCarthy, and C. F. Larsen (2008), Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions, J. Glaciol., 54(188), 767777, doi:10.3189/002214308787779933.
  • Mayer-Gürr, T. (2008), Gravitationsfeldbestimmung aus der Analyse kurzer Bahnbögen am Beispiel der Satellitenmissionen CHAMP und GRACE, Dissertation, Schriftenreihe des Instituts für Geodäsie und Geoinformation, Heft 9, 113 pp., Institut für Geodäsie und Geoinformation, Rheinischen Friedrich-Wilhelms Univ. Bonn, Bonn, Germany, ISSN 1864-1133.
  • Mayer-Gürr, T., A. Eicker, E. Kurtenbach, and K. H. Ilk (2010a), ITG-GRACE: Global static and temporal gravity field models from GRACE data, in Adv. Technol. in Earth Sci., System Earth via Geodetic-Geophysical Space Techniques, edited by F. Flechtner et al., pp. 159168, Springer, Berlin–Heidelberg, doi:10.1007/978-3-642-10228-8_13.
  • Mayer-Gürr, T., E. Kurtenbach, and A. Eicker (2010b), ITG-Grace2010: The new GRACE gravity field release computed in Bonn. Geophys. Res. Abstr., 12, EGU2010-2446.
  • Migliaccio, F., M. Reguzzoni, and F. Sansò (2004), Space-wise approach to satellite gravity field determination in the presence of coloured noise, J. Geod., 78(4–5), 304313, doi:10.1007/s00190-004-0396-z.
  • Migliaccio, F., M. Reguzzoni, F. Sansò, C. C. Tscherning, and M. Veicherts (2010), GOCE data analysis: The space-wise approach and the first space-wise gravity field model, in Proceedings of the ESA Living Planet Symposium, edited by H. Lacoste-Francis, ESA Publ., SP-686, ESA/ESTEC, Nordwijk, The Netherlands, ISBN:978-92-9221-250-6, ISSN:1609-042X.
  • Pail, R., H. Goiginger, R. Mayrhofer, W.-D. Schuh, J. M. Brockmann, I. Krasbutter, E. Höck, and T. Fecher (2010a), GOCE gravity field model derived from orbit and gradiometry data applying the time-wise method, in Proceedings of the ESA Living Planet Symposium, edited by H. Lacoste-Francis, ESA Publ., SP-686, ESA/ESTEC, Nordwijk, The Netherlands, ISBN:978-92-9221-250-6, ISSN:1609-042X.
  • Pail, R., H. Goiginger, W.-D. Schuh, E. Höck, J. M. Brockmann, T. Fecher, T. Gruber, T. Mayer-Gürr, J. Kusche, A. Jäggi, and D. Rieser (2010b), Combined satellite gravity field model GOCO01S derived from GOCE and GRACE, Geophys. Res. Lett., 37, L20314, doi:10.1029/2010GL044906.
  • Pail, R., H. Goiginger, W.-D. Schuh, E. Höck, J. M. Brockmann, T. Fecher, R. Mayrhofer, I. Krasbutter, and T. Mayer-Gürr (2011a), GOCE-only gravity field model derived from 8 months of GOCE data, in Proceedings of 4th International GOCE User Workshop, edited by L. Ouwehand, ESA Publ., SP-696, ESA/ESTEC, Nordwijk, The Netherlands, ISBN:978-92-9092-260-5, ISSN:1609-042X.
  • Pail, R., et al. (2011b), First GOCE gravity field models derived by three different approaches, J. Geod., 85(11), 819843, doi:10.1007/s00190-011-0467-x.
  • Pavlis, N. K., and R. H. Rapp (1990), The development of an isostatic gravitational model to degree 360 and its use in global gravity modelling, Geophys. J. Int., 100, 369378, doi:10.1111/j.1365-246X.1990.tb00691.x.
  • Pavlis, N. K., S. A. Holmes, S. C. Kenyon, D. Schmidt, and R. Trimmer (2005), A preliminary gravitational model to degree 2160, in Gravity, Geoid and Space Missions, IAG Symp. Ser., vol. 129, edited by C. Jekeli, L. Bastos and J. Fernandes, pp. 18 − 23, Springer, Berlin-Heidelberg, doi:10.1007/3-540-26932-0_4.
  • Pavlis, N. K., S. A. Holmes, S. C. Kenyon, and J. K. Factor (2012), The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), J. Geophys. Res., 117, B04406, doi:10.1029/2011JB008916.
  • Rapp, R. H. (1982), Degree variances of the Earth's potential, topography and its isostatic compensation, Bull. Géod., 56(2), 8994, doi:10.1007/BF02525594.
  • Rapp, R. H. (1986), Global geopotential solutions, in Lect. Notes in Earth Sci., vol. 7, Mathematical and Numerical Techniques in Physical Geodesy, edited by H. Sünkel, pp. 365415, Springer, Berlin-Heidelberg, doi:10.1007/BFb0010136.
  • Reguzzoni, M. (2003), From the time-wise to space-wise GOCE observables, Adv. Geosci., 1, 137142, doi:10.5194/adgeo-1-137-2003.
  • Reigber C., H. Lühr, and P. Schwintzer (2002), Champ mission status, Adv. Space Res., 30(2), 129134, doi:10.1016/S0273-1177(02)00276-4.
  • Rispens, S. M., and J. Bouman (2011), External calibration of GOCE accelerations to improve derived gravitational gradients, J. Geod. Sci., 1(2), 114126, doi:10.2478/v10156-010-0014-3.
  • Rummel, R., and M. van Gelderen (1995), Meissl scheme—Spectral characteristics of physical geodesy, manuscr geod, 20(5), 379385.
  • Rummel, R., R. H. Rapp, H. Sünkel, and C. C. Tscherning (1988), Comparisons of global topographic/isostatic models to the Earth's observed gravity field, Rep. 388, Depart. of Geod. Sci. and Surv., The Ohio State University, Columbus.
  • Rummel, R., M. van Gelderen, R. Koop, E. Schrama, F. Sansò, M. Brovelli, F. Migliaccio, and F. Sacerdote (1993), Spherical harmonic analysis of satellite gradiometry, Publ. on Geod. New Ser., vol. 39, Netherlands Geodetic Commission, Delft.
  • Rummel, R., W. Yi, and C. Stummer (2011), GOCE gravitational gradiometry, J. Geod., 85(11), 777790, doi:10.1007/s00190-011-0500-0.
  • Saleh, J., and N. K. Pavlis (2003), The development and evaluation of the global digital terrain model DTM2002, in Gravity and Geoid 2002, Third Meeting of the International Gravity and Geoid Commission: Meeting Proceedings, edited by I. N. Tziavos, pp. 207212, Ziti Publ., Thessaloniki, Greece.
  • Seeber, G. (2003), Satellite Geodesy, 2nd ed., de Gruyter, Berlin–New York.
  • Smith, D. A. (1998), There is no such thing as “The” EGM96 geoid: Subtle points on the use of a global geopotential model, IGeS Bulletin, 8, 1728.
  • Sneeuw, N. (1994), Global spherical harmonic analysis by least-squares and numerical quadrature methods in historical perspective, Geophys. J. Int., 118(3), 707716, doi:10.1111/j.1365-246X.1994.tb03995.x.
  • Sneeuw, N. (2000), A semi-analytical approach to gravity field analysis from satellite observations, Reihe C, Heft 527, 102 pp., Deutsche Geodätische Kommission, Verlag der Bayerischen Akademie der Wissenschaften, München, ISBN 978-3-7696-9566-6, ISSN 0065-5325.
  • Sneeuw, N. (2003), Space-wise, time-wise, torus and Rosborough representations in gravity field modelling, Space Sci. Rev., 108(1–2), 3746, doi:10.1023/A:1026165612224.
  • Sneeuw, N., and M. van Gelderen (1997), The polar gap, in Lect. Notes in Earth Sci., vol. 65, Geodetic Boundary Value Problems in View of the One Centimeter Geoid, edited by F. Sansò and R. Rummel, pp. 559568, Springer, Berlin–Heidelberg, doi:10.1007/BFb0011717.
  • Sünkel, H. (1985), An isostatic Earth model, Rep. 367, Dep. of Geod. Sci. and Surv., The Ohio State University, Columb.
  • Sünkel, H. (1986), Global topographic-isostatic models, in Lect. Notes in Earth Sci., vol. 7, Mathematical and Numerical Techniques in Physical Geodesy, edited by H. Sünkel, pp.417462, Springer, Berlin–Heidelberg, doi:10.1007/BFb0010137.
  • Tapley, B. D., S. Bettadpur, M. Watkins, and C. Reigber (2004), The gravity field recovery and climate experiment: Mission overview and early results, Geophys. Res. Lett., 31, L09607, doi:10.1029/2004GL019920.
  • Tapley, B., J. Ries, S. Bettadpur, D. Chambers, M. Cheng, F. Condi, and S. Poole (2007), The GGM03 mean Earth gravity model from GRACE, Eos Trans. AGU, 88(52), Fall Meet. Suppl., Abstract G42A-03.
  • Torge, W. (1989), Gravimetry, de Gruyter, Berlin-New York.
  • Torge, W. (2001), Geodesy, 3rd ed., de Gruyter, Berlin-New York.
  • Tscherning, C. C. (1985), On the long-wavelength correlation between gravity and topography, in Fifth International SymposiumGeodesy and Physics of the Earth”, G.D.R. Magdeburg, 23–29 September 1984: Symposium Proceedings, edited by H. Kautzleben, Veröffentlichungen des Zentralinstituts für Physik der Erde, 81(2), 134142, Akademie der Wissenschaften der DDR, Potsdam.
  • Tsoulis, D. (1999), Spherical harmonic computations with topographic/isostatic coefficients, Tech. Rep. Ser., Rep. 3, 33 pp., Institute of Astronomical and Physical Geodesy, Techn. Univ. of Munich, ISBN 978-3-934205-02-4, ISSN 1437-8280.
  • Tsoulis, D. (2001), A comparison between the Airy/Heiskanen and the Pratt/Hayford isostatic models for the computation of potential harmonic coefficients, J. Geod., 74(9), 637643, doi:10.1007/s001900000124.
  • Tsoulis, D. (2004), Spherical harmonic analysis of the CRUST 2.0 global crustal model, J. Geod., 78(1–2), 711, doi:10.1007/s00190-003-0360-3.
  • Tsoulis, D. (2005), The derivation and analysis of topographic/isostatic gravity models up to degree and order 1082, Boll. Geod. Sci. Aff., 64(4), 211225.
  • Tsoulis, D., Z. Ieronimaki, G. Kalampoukas, D. Papanikolaou, T. Papanikolaou, K. Patlakis, and I. Vassiliadis (2011), Spectral analysis and interpretation of current satellite-only Earth gravity models by incorporating global terrain and crustal data, Final-Report, 333 pp., ESA Contract 22319/09/NL/CB.
  • Vening-Meinesz, F. A. (1931), Une nouvelle méthode pour la réduction isostatique régionale de l'intensité de la pesanteur, Bull. Géod., 29(1), 3351, doi:10.1007/BF03030038.
  • Visser, P. N. A. M., N. Sneeuw, and C. Gerlach (2003), Energy integral method for gravity field determination from satellite orbit coordinates, J. Geod., 77(3–4), 207216, doi:10.1007/s00190-003-0315-8.
  • Watts, A. B. (2001), Isostasy and Flexure of the Lithosphere, Cambridge Univ. Press, Cambridge, U. K.
  • Wermuth M., D. Švehla, L. Földváry, C. Gerlach, T. Gruber, B. Frommknecht, T. Peters, M. Rothacher, R. Rummel, and P. Steigenberger (2004), A gravity field model from two years of CHAMP kinematic orbits using the energy balance approach, Geophys. Res. Abstr., 6, EGU04-A-03843.