• river restoration;
  • Acipenser transmontanus;
  • larval stocking;
  • larval growth;
  • bed armouring;
  • flow regulation


Site-specific habitat alterations have improved spawning success and early life stage survival of different fish species, including sturgeon, in regulated rivers. We modified the substrate within a section of river at the only known spawning site used by white sturgeon (Acipenser transmontanus) in the Mid Columbia River, Canada. Existing armoured riverbed conditions were modified using a mixture of larger and smaller angular rock with the assumption that the larger material would remain in place at higher discharges and help retain the smaller material. This increased substrate complexity and the amount of available interstitial spaces. We stocked 2-day posthatch larvae over both the modified site and at an adjacent control site that represented existing substrate conditions. Our objectives were to determine (i) the extent that stocked larvae remained in both the modified and control sites immediately after release, (ii) the timing of subsequent dispersal of larvae from both sites and (iii) how total length of dispersing larvae changed over time and by site. Results from this work indicated that the modified section of riverbed retained significantly higher numbers of larvae after release compared with the control site. Larvae at the modified site were able to hide and remain within the substrate and initiated downstream drift 15 days after release. With the exception of the first day after release, dispersal from both sites occurred at night. There was a significant effect of time after release and site on the total length of dispersing larvae. The larger variation in total larval length observed at the control site compared with the modified site indicated greater difficulty in hiding within the control substrate. Larvae initiated dispersal from the modified site at a mean size of 17.5 mm, which may indicate an important growth threshold before drift. Results from this work are important for future mitigative efforts for sturgeon in regulated rivers where changes to spawning substrates have occurred. Copyright © 2012 John Wiley & Sons, Ltd.