Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation



The dynamic nature of alluvial floodplain rivers is a function of flow and sediment regimes interacting with the physiographic features and vegetation cover of the landscape. During seasonal inundation, the flood pulse forms a ‘moving littoral’ that traverses the plain, increasing productivity and enhancing connectivity. The range of spatio-temporal connectivity between different biotopes, coupled with variable levels of natural disturbance, determine successional patterns and habitat heterogeneity that are responsible for maintaining the ecological integrity of floodplain river systems. Flow regulation by dams, often compounded by other modifications such as levee construction, normally results in reduced connectivity and altered successional trajectories in downstream reaches. Flood peaks are typically reduced by river regulation, which reduces the frequency and extent of floodplain inundation. A reduction in channel-forming flows reduces channel migration, an important phenomenon in maintaining high levels of habitat diversity across floodplains. The seasonal timing of floods may be shifted by flow regulation, with major ramifications for aquatic and terrestrial biota. Truncation of sediment transport may result in channel degradation for many kilometres downstream from a dam. Deepening of the channel lowers the water-table, which affects riparian vegetation dynamics and reduces the effective base level of tributaries, which results in rejuvenation and erosion. Ecological integrity in floodplain rivers is based in part on a diversity of water bodies with differing degrees of connectivity with the main river channel. Collectively, these water bodies occupy a wide range of successional stages, thereby forming a mosaic of habitat patches across the floodplain, This diversity is maintained by a balance between the trend toward terrestrialization and flow disturbances that renew connectivity and reset successional sequences. To counter the influence of river regulation, restoration efforts should focus on reestablishing dynamic connectivity between the channel and floodplain water bodies.