SEARCH

SEARCH BY CITATION

Abstract

We analyze Markov chains for generating a random k-coloring of a random graph Gn,d/n. When the average degree d is constant, a random graph has maximum degree Θ(log n/log log n), with high probability. We show that, with high probability, an efficient procedure can generate an almost uniformly random k-coloring when k = Θ(log log n/log log log n), i.e., with many fewer colors than the maximum degree. Previous results hold for a more general class of graphs, but always require more colors than the maximum degree. © 2006 Wiley Periodicals, Inc. Random Struct. Alg., 2006