Local resilience of almost spanning trees in random graphs



We prove that for fixed integer D and positive reals α and γ, there exists a constant C0 such that for all p satisfying p(n) ≥ C0/n, the random graph G(n,p) asymptotically almost surely contains a copy of every tree with maximum degree at most D and at most (1 - α)n vertices, even after we delete a (1/2 - γ)-fraction of the edges incident to each vertex. The proof uses Szemerédi's regularity lemma for sparse graphs and a bipartite variant of the theorem of Friedman and Pippenger on embedding bounded degree trees into expanding graphs. © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 2011