SEARCH

SEARCH BY CITATION

REFERENCES

  • [1]
    W. Hunt, Materials informatics: Growing from the Bio World, JOM J Miner Met Mater Soc 58(7):2006; 8888.
  • [2]
    L. Peurrung, K. Ferris, and T. Osman, The materials informatics workshop: Theory and application JOM J Miner Met Mater Soc 59(3):2007; 5050.
  • [3]
    Z.-K. Liu, L.-Q. Chen, and K. Rajan, Linking length scales via materials informatics, JOM J Miner Met Mater Soc 58(11):2006; 4250.
  • [4]
    M. F. Ashby and A. L. Greer, Metallic glasses as structural materials, Scr Mater 54(3):2006; 321326.
  • [5]
    V. Cherkassky and F. Mulier, Learning from Data: Concepts, Theory, and Methods, (2nd ed.) Hoboken, John Wiley & Sons, 2007.
  • [6]
    D. B. Searls, Data integration: challenges for drug discovery, Nat Rev Drug Discov 4(1):2005; 4558.
  • [7]
    J. Bajorath, Selected concepts and investigations in compound classification, molecular descriptor analysis, and virtual screening, J Chem Inf Comput Sci 41(2):2001; 233245.
  • [8]
    D. Wichern and R. A. Johnson, Applied Multivariate Statistical Analysis, (5th ed.) Englewood Cliffs, NJ, Prentice-Hall, 2002.
  • [9]
    L. Eriksson, N. Kettaneh-Wold, J. Trygg, C. Wikström, and S. Wold, Multi- and Megavariate Data Analysis / Principles and Applications, Umea, Umetrics Academy, Umetrics AB, 2001.
  • [10]
    C. Suh, Informatics Aided Design of Crystal Chemistry, Troy, Rensselaer Polytechnic Institute, 2005.
  • [11]
    J. C. Phillips, Physics of High-Tc Superconductors, San Diego, CA, Academic Press, Inc, 1989.
  • [12]
    C. P. Poole Jr, T. Datta, and H. A. Farach, Copper Oxide Superconductors, New York, John Wiley & Sons, 1988.
  • [13]
    C. P. Poole Jr, H. A. Farach, and R. J. Creswick, Superconductivity, San Diego, CA, Academic Press, 1995.
  • [14]
    C. P. PooleJr,(ed.), Handbook of Superconductivity, San Diego, CA, Academic Press, 2000.
  • [15]
    R. M. Hazen, Crystal structures of high-temperature superconductors, in Physical Properties of High-Temperature Superconductors II, D. M. Ginsberg, (ed.), New Jersey, World Scientific, 1990; 121198.
  • [16]
    B. W. Roberts, Survey of superconductive materials and critical evaluation of selected properties, J Phys Chem Ref Data 5(3):1976; 581822.
  • [17]
    J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Superconductivity at 39K in magnesium diboride, Nature 410(6824):2001; 6364.
  • [18]
    K. P. Bohnen, R. Heid, and B. Renker, Phonon dispersion and electron-phonon coupling in MgB2 and AlB2, Phys Rev Lett 86(25):2001; 5771.
  • [19]
    N. I. Medvedeva, A. L. Ivanovskii, J. E. Medvedeva, and A. J. Freeman, Electronic structure of superconducting MgB2 and related binary and ternary borides, Phys Rev B 64(2):2001; 020502.
  • [20]
    P. P. Singh, Role of boron p-electrons and holes in superconducting MgB2, and other diborides: A fully relaxed, full-potential electronic structure study, Phys Rev Lett 87(8):2001; 087004.
  • [21]
    P. Vajeeston, P. Ravindran, C. Ravi, and R. Asokamani, Electronic structure, bonding, and ground-state properties of AlB2-type transition-metal diborides, Phys Rev B 63(4):2001; 045115.
  • [22]
    M. Imai, E. Abe, J. Ye, K. Nishida, T. Kimura, K. Honma, H. Abe, and H. Kitazawa, Superconductivity of ternary silicide with the AlB2-type structure Sr(Ga0.37,Si0.63)2, Phys Rev Lett 87(7):2001; 077003.
  • [23]
    M. Imai, K. Nishida, T. Kimura, H. Kitazawa, H. Abe, H. Kito, and K. Yoshii, Superconductivity of M-I(M-II0.5,Si-0.5)(2) (M-I = Sr and Ba, M-II = Al and Ga), ternary silicides with the AlB2-type structure, Physica C 382:2002; 361366.
  • [24]
    H. Kito, Y. Takano, and K. Togano, Superconductivity in ternary germanide Y(Pt0.5Ge1.5) with the AlB2-type structure, Physica C 377:2002; 185189.
  • [25]
    S. Majumdar and E. V. Sampathkumaran, Observation of enhanced magnetic transition temperature in Nd2PdGe3 and superconductivity in Y2PdGe3, Phys Rev B 63(17):2001; 172407.
  • [26]
    R.L. Meng, B. Lorenz, Y.S. Wang, J. Cmaidalka, Y.Y. Sun, Y.Y. Xue, J.K. Meen, and C.W. Chu, Study of binary and pseudo-binary intermetallic compounds with AlB2 structure, Physica C 382(1):2002; 113116.
  • [27]
    C. Suh, A. Rajagopalan, X. Li, and K. Rajan, Combinatorial materials design through database science, in MRS Fall Meeting Proceedings, Boston, MA, 2003.
  • [28]
    P. Villars and J. C. Phillips, Quantum structural diagrams and high-Tc superconductivity, Phys Rev B 37(4):1988; 2345.
  • [29]
    E. Buckingham, On physically similar systems; illustrations of the use of dimensional equations, Phys Rev 4(4):1914; 345376.
  • [30]
    C.-C. Li and Y.-C. Lee, A statistical procedure for model building in dimensional analysis, Int J Heat Mass Transf 33(7):1990; 15661567.
  • [31]
    V.G. Dovi, A.P. Reverberi, L. Maga, and G. De Marchi, Improving the statistical accuracy of dimensional analysis correlations for precise coefficient estimation and optimal design of experiments, Int Commun Heat Mass Transf 18(4):1991; 581590.
  • [32]
    G. A. Vignaux, Dimensional analysis in operations-research, N Z Oper Res 14(1):1986; 8192.
  • [33]
    G. A. Vignaux, Some examples of dimensional analysis in operations research and statistics, in The 4th International Workshop on Similarity Methods, Stuttgart, University of Stuttgart, 2001.
  • [34]
    B. B. Hicks, Some limitations of dimensional analysis and power laws, Bound-Lay Meteorol 14(4):1978; 567569.
  • [35]
    B. C. Kenney, On the validity of empirical power laws, Stoch Environ Res Risk Assess 7(3):1993; 179194.
  • [36]
    G. Bradshaw, P. Langley, and H. A. Simon, BACON 4: The discovery of intrinsic properties, in Proceedings of the Third National Conference of the Canadian Society for Computational Studies of Intelliqence, Victoria, British Columbia, Canada, 1980.
  • [37]
    T. Washio and H. Motoda, Extension of dimensional analysis for scale-types and its application to discovery of admissible models of complex processes, in 2nd International Workshop on Similarity Method, Stuttgart, Germany, 1999.
  • [38]
    M. M. Kokar, Determining arguments of invariant functional descriptions, Mach Learn 1:1986; 403422.
  • [39]
    T. Washio, M. Motoda, and Y. Niwa, Enhancing the plausibility of law equation discovery, Proceedings 17th International Conference on Machine Learning, San Francisco, CA, Morgan Kaufmann Publishers Inc., 2000.
  • [40]
    P. F. Mendez, R. Furrer, R. Ford, and F. Ordóñez, Scaling laws as a tool of materials informatics, JOM J Miner Met Mater Soc 60(3):2008; 6066.
  • [41]
    P. F. Mendez and F. Ordonez, Scaling laws from statistical data and dimensional analysis, J Appl Mech 72(5):2005; 648657.
  • [42]
    S. Newcomb, Note on the frequency of use of the different digits in natural numbers, Am J Math 4(1):1881; 3940.
  • [43]
    F. Benford, The law of anomalous numbers, Proc Am Philos Soc 78(4):1938; 551572.
  • [44]
    F. Ordonez and P. F. Mendez, Scaling LAWS. SLAW homepage, [cited; Available from: http://illposed. usc.edu/∼pat/SLAW. [Last accessed 15 May 2003].
  • [45]
    P. Mazzatorta, E. Benfenati, D. Neagu, and G. Gini, The importance of scaling in data mining for toxicity prediction, J Chem Inf Comput Sci 42(5):2002; 12501255.
  • [46]
    Y. Li, Predicting materials properties and behavior using classification and regression trees, Mater Sci Eng A 433(1–2):2006; 261268.
  • [47]
    Z.-K. Liu, L.-Q. Chen, and K. Rajan, Linking length scales via materials informatics, JOM 58:2006; 4250.
  • [48]
    K. Rajan, Materials informatics, Mater Today 8(10):2005; 3845.
  • [49]
    J.-W. Park, P. F. Mendez, and T. W. Eagar, Strain energy distribution in ceramic to metal joints, Acta Mater 50:2002; 883899.