Get access

Two-way Gaussian mixture models for high dimensional classification

Authors

  • Mu Qiao,

    Corresponding author
    1. Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
    2. Department of Statistics, The Pennsylvania State University, University Park, PA 16802, USA
    • Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
    Search for more papers by this author
  • Jia Li

    1. Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
    2. Department of Statistics, The Pennsylvania State University, University Park, PA 16802, USA
    Search for more papers by this author

Abstract

Mixture discriminant analysis (MDA) has gained applications in a wide range of engineering and scientific fields. In this article, under the paradigm of MDA, we propose a two-way Gaussian mixture model for classifying high dimensional data. This model regularizes the mixture component means by dividing variables into groups and then constraining the parameters for the variables in the same group to be identical. The grouping of the variables is not pre-determined, but optimized as part of model estimation. A dimension reduction property for a two-way mixture of distributions from a general exponential family is proved. Estimation methods for the two-way Gaussian mixture with or without missing data are derived. Experiments on several real data sets show that the parsimonious two-way mixture often outperforms a mixture model without variable grouping; and as a byproduct, significant dimension reduction is achieved. Copyright © 2010 Wiley Periodicals, Inc. Statistical Analysis and Data Mining 3: 259-271, 2010

Ancillary