- 1
F. Mörchen, Unsupervised pattern mining from symbolic temporal data, SIGKDD Explor Newsl 9(1) (2007), 41–55. - 2
J. Vreeken, M. van Leeuwen, and A. Siebes, A. Krimp: mining itemsets that compress, Data Mining Knowl Discov 23(1) (2011), 169–214. - 3
P. Grünwald, The Minimum Description Length Principle, Cambridge, Massachusetts, USA, The MIT Press, 2007.

- 4
M. van Leeuwen, J. Vreeken, and A. Siebes, Identifying the components, Data Mining Knowl Discov 19(2) (2009), 176–193. - 5
M. van Leeuwen and A. Siebes, StreamKrimp: detecting change in data streams, ECML/PKDD (1) Part I (2008), 672–687. - 6
H. T. Lam, F. Moerchen, D. Fradkin, and T. Calders, Mining Compressing Sequential Patterns, SDM, SIAM, Philadelphia, PA, USA, 2012.

- 7
I. Witten, A. Moffat, and T. Bell, Managing Gigabytes: Compressing and Indexing Documents and Images, Burlington, Massachusetts, Morgan Kaufmann, 1999.

- 8
J. Vreeken and N. Tatti, The Long and the Short of It: Summarizing Event Sequences with Serial Episodes, SIGKDD, ACM, 2012, 462–470.

- 9
A. Gionis, H. Mannila, T. Mielikäinen, and P. Tsaparas, Assessing data mining results via swap randomization, TKDD 1(3) (2007). - 10
A. Miettinen, T. Mielikainen, A. Gionis, G. Das, and H. Mannila, IEEE Transactions on The discrete basis problem knowledge and data engineering, 2008.

- 11
S. Hanhijärvi, G. C. Garriga, and K. Puolamäki, Randomization Techniques for Graphs, SDM, 2009, 780–791.

- 12
R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, Network motifs: simple building blocks of complex networks, Science 298(5594) (2002), 824–827. - 13
N. Castro and P. Azevedo, Time Series Motifs Statistical Significance, SDM, 2011, 687–698

- 14
K. Smets and J. V. Slim, Directly Mining Descriptive Patterns, SIAM SDM, 2012, 236–247.

- 15
L. Holder, D. Cook, S. Djoko, Substructure discovery in the SUBDUE system, KDD Workshop, 1994, 169–180.

- 16
D. Chakrabarti, S. Papadimitriou, D. Modha, and C. Faloutsos, Fully automatic cross-associations, KDD, 2004, 79–88.

- 17
R. Cilibrasi and P. Vitányi, Clustering by compression, IEEE Trans Inf Theory 51 (2005), 4. - 18
E. Keogh, S. Lonardi, C. A. Ratanamahatana, L. Wei, S.-H. Lee, and J. Handley, Compression-based data mining of sequential data, Data Mining Knowl Disco 14(1) (2007). - 19
C. Faloutsos and V. Megalooikonomou, On data mining, compression, and Kolmogorov complexity, Data Mining Knowl Discov 15(1) (2007), 3–20. - 20
F. Geerts, B. Goethals, and T. Mielikainen, Tiling databases, Discov Sci (2004), 278–289. - 21
C. Ambuhl, M. Mastrolilli, and O. Svensson, Inapproximability results for maximum edge biclique, minimum linear arrangement, and sparsest cut, SIAM J Comput 40(2) (2011), 567–596. - 22
J. Pei, J. Han, Mortazavi-Asl, J. W. Pinto, Q.C. Dayal and M.-C. Hsu, Mining Sequential Patterns by Pattern-Growth: The PrefixSpan Approach, TKDE, (2004), 1424–1440. - 23
Jianyong and J. Han, BIDE: Efficient mining of frequent closed sequences, In Proceedings of the 20th International Conference on Data Engineering (ICDE), Washington DC, USA, IEEE Press, (2004), 79–90.

- 24
D. Fradkin and F. Moerchen, Margin-Closed Frequent Sequential Pattern Mining, Workshop on Mining Useful Patterns, KDD, 2010.

- 25
W. Conover, Practical Nonparametric Statistics, (2nd ed.), New York, Wiley, 1980.

- 26
F. Moerchen and D. Fradkin, Robust mining of time intervals with semi-interval partial order patterns, In Proceedings of SIAM SDM, 2010, 315–326.

- 27
J. Vreeken, Making pattern mining useful, ACM SIGKDD Explor 12(1) (2010), 75–76. - 28
N. Tatti and J. Vreeken, Finding good itemsets by packing data, ICDM (2008), 588–597. - 29
T. De Bie, Maximum entropy models and subjective interestingness: an application to tiles in binary databases. DMKD J 23(3) (2011), 407–446. - 30
T. De Bie, K.-N. Kontonasios, E. Spyropoulou, A framework for mining interesting pattern sets, SIGKDD Explor 12(2) (2010), 92–100. - 31
J. Han, Mining useful patterns: my evolutionary view. Keynote talk at the Mining Useful Patterns workshop KDD (2010).

- 32
F. Moerchen, T. Michael, and U. Alfred, Efficient mining of all margin-closed itemsets with applications in temporal knowledge discovery and classification by compression, Knowl Inf Syst 29(1) (2010), 55–80.

- 33
D. Huffman, A method for the construction of minimum-redundancy codes, Proc IRE 40(9) (1952), 1098–1102. - 34
J. Storer, Data compression via textual substitution, J ACM 29(4) (1982), 928–951. - 35
M. Warmuth and D. Haussler, On the complexity of iterated shuffle, J Comput Syst Sci 28(3) (1984), 345–358.