SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    F. Mörchen, Unsupervised pattern mining from symbolic temporal data, SIGKDD Explor Newsl 9(1) (2007), 4155.
  • 2
    J. Vreeken, M. van Leeuwen, and A. Siebes, A. Krimp: mining itemsets that compress, Data Mining Knowl Discov 23(1) (2011), 169214.
  • 3
    P. Grünwald, The Minimum Description Length Principle, Cambridge, Massachusetts, USA, The MIT Press, 2007.
  • 4
    M. van Leeuwen, J. Vreeken, and A. Siebes, Identifying the components, Data Mining Knowl Discov 19(2) (2009), 176193.
  • 5
    M. van Leeuwen and A. Siebes, StreamKrimp: detecting change in data streams, ECML/PKDD (1) Part I (2008), 672687.
  • 6
    H. T. Lam, F. Moerchen, D. Fradkin, and T. Calders, Mining Compressing Sequential Patterns, SDM, SIAM, Philadelphia, PA, USA, 2012.
  • 7
    I. Witten, A. Moffat, and T. Bell, Managing Gigabytes: Compressing and Indexing Documents and Images, Burlington, Massachusetts, Morgan Kaufmann, 1999.
  • 8
    J. Vreeken and N. Tatti, The Long and the Short of It: Summarizing Event Sequences with Serial Episodes, SIGKDD, ACM, 2012, 462470.
  • 9
    A. Gionis, H. Mannila, T. Mielikäinen, and P. Tsaparas, Assessing data mining results via swap randomization, TKDD 1(3) (2007).
  • 10
    A. Miettinen, T. Mielikainen, A. Gionis, G. Das, and H. Mannila, IEEE Transactions on The discrete basis problem knowledge and data engineering, 2008.
  • 11
    S. Hanhijärvi, G. C. Garriga, and K. Puolamäki, Randomization Techniques for Graphs, SDM, 2009, 780791.
  • 12
    R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, Network motifs: simple building blocks of complex networks, Science 298(5594) (2002), 824827.
  • 13
    N. Castro and P. Azevedo, Time Series Motifs Statistical Significance, SDM, 2011, 687698
  • 14
    K. Smets and J. V. Slim, Directly Mining Descriptive Patterns, SIAM SDM, 2012, 236247.
  • 15
    L. Holder, D. Cook, S. Djoko, Substructure discovery in the SUBDUE system, KDD Workshop, 1994, 169180.
  • 16
    D. Chakrabarti, S. Papadimitriou, D. Modha, and C. Faloutsos, Fully automatic cross-associations, KDD, 2004, 7988.
  • 17
    R. Cilibrasi and P. Vitányi, Clustering by compression, IEEE Trans Inf Theory 51 (2005), 4.
  • 18
    E. Keogh, S. Lonardi, C. A. Ratanamahatana, L. Wei, S.-H. Lee, and J. Handley, Compression-based data mining of sequential data, Data Mining Knowl Disco 14(1) (2007).
  • 19
    C. Faloutsos and V. Megalooikonomou, On data mining, compression, and Kolmogorov complexity, Data Mining Knowl Discov 15(1) (2007), 320.
  • 20
    F. Geerts, B. Goethals, and T. Mielikainen, Tiling databases, Discov Sci (2004), 278289.
  • 21
    C. Ambuhl, M. Mastrolilli, and O. Svensson, Inapproximability results for maximum edge biclique, minimum linear arrangement, and sparsest cut, SIAM J Comput 40(2) (2011), 567596.
  • 22
    J. Pei, J. Han, Mortazavi-Asl, J. W. Pinto, Q.C. Dayal and M.-C. Hsu, Mining Sequential Patterns by Pattern-Growth: The PrefixSpan Approach, TKDE, (2004), 14241440.
  • 23
    Jianyong and J. Han, BIDE: Efficient mining of frequent closed sequences, In Proceedings of the 20th International Conference on Data Engineering (ICDE), Washington DC, USA, IEEE Press, (2004), 7990.
  • 24
    D. Fradkin and F. Moerchen, Margin-Closed Frequent Sequential Pattern Mining, Workshop on Mining Useful Patterns, KDD, 2010.
  • 25
    W. Conover, Practical Nonparametric Statistics, (2nd ed.), New York, Wiley, 1980.
  • 26
    F. Moerchen and D. Fradkin, Robust mining of time intervals with semi-interval partial order patterns, In Proceedings of SIAM SDM, 2010, 315326.
  • 27
    J. Vreeken, Making pattern mining useful, ACM SIGKDD Explor 12(1) (2010), 7576.
  • 28
    N. Tatti and J. Vreeken, Finding good itemsets by packing data, ICDM (2008), 588597.
  • 29
    T. De Bie, Maximum entropy models and subjective interestingness: an application to tiles in binary databases. DMKD J 23(3) (2011), 407446.
  • 30
    T. De Bie, K.-N. Kontonasios, E. Spyropoulou, A framework for mining interesting pattern sets, SIGKDD Explor 12(2) (2010), 92100.
  • 31
    J. Han, Mining useful patterns: my evolutionary view. Keynote talk at the Mining Useful Patterns workshop KDD (2010).
  • 32
    F. Moerchen, T. Michael, and U. Alfred, Efficient mining of all margin-closed itemsets with applications in temporal knowledge discovery and classification by compression, Knowl Inf Syst 29(1) (2010), 5580.
  • 33
    D. Huffman, A method for the construction of minimum-redundancy codes, Proc IRE 40(9) (1952), 10981102.
  • 34
    J. Storer, Data compression via textual substitution, J ACM 29(4) (1982), 928951.
  • 35
    M. Warmuth and D. Haussler, On the complexity of iterated shuffle, J Comput Syst Sci 28(3) (1984), 345358.