- 1
E. Parzen, On estimation of a probability density function and mode, Ann Math Stat 33(3) (1962), 1065–1076. - 2
E. Nadaraya, On estimating regression, Theory Prob Appl 9 (1964), 141–142. - 3
C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning), The MIT Press, Cambridge, MA, 2005.

- 4
B. Scholkopf, A. Smola, and K. Muller, Nonlinear component analysis as a kernel eigenvalue problem, Neural Comput 10(5) (1998), 1299–1319. - 5
B. Scholkopf and A. Smola, Learning with Kernels: support vector machines, regularization, Optimization, and Beyond, Vol. 1, MIT Press, Cambridge, MA, 2002, 2.

- 6
D. Lee, A. Gray, and A. Moore, Dual-tree fast gauss transforms, In Advances in Neural Information Processing Systems, Vol. 18, Y. Weiss, B. Schölkopf, and J. Platt, eds. MIT Press, Cambridge, MA, 2006, 747–754.

- 7
D. Lee and A. Gray, Faster Gaussian summation: theory and experiment. Proceedings of the Twenty-second Conference on Uncertainty in Artificial Intelligence, 2006.

- 8
M. Holmes, A. Gray, and C. Isbell Jr, Ultrafast Monte Carlo for kernel estimators and generalized statistical summations, Adv Neural Inf Process Syst 21 (2008).

- 9
D. Lee and A. Gray, Fast high-dimensional kernel summations using the monte carlo multipole method, Adv Neural Inf Process Syst 21 (2009), 929–936. - 10
A. Rahimi and B. Recht, Random features for large-scale kernel machines, Adv Neural inf Process Syst 20, 2008, 1177–1184.

- 11
J. L. Bentley, Multidimensional binary search trees used for associative searching, Commun ACM 18 (1975), 509–517. - 12
S. M. Omohundro, Five Balltree Construction Algorithms. Technical Report TR-89-063, International Computer Science Institute, 1989.

- 13
P. Yianilos, Data structures and algorithms for nearest neighbor search in general metric spaces, Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, 1993, 311–321. - 14
S. Dasgupta and Y. Freund, Random projection trees and low dimensional manifolds, Proceedings of the 40th Annual ACM Symposium on Theory of Computing, ACM, British Columbia, Canada, 2008, 537–546. - 15
P. Liu and J. Jan Wu, A framework for parallel tree-based scientific simulations, In Proceedings of 26 th International Conference on Parallel Processing, 1997, 137–144.

- 16
A. Gray and A. W. Moore, N-body problems in statistical learning, In Advances in Neural Information Processing Systems, T. K. Leen, T. G. Dietterich, and V. Tresp, eds. 2000, MIT Press, Cambridge, MA, 2001.

- 17
D. York, J. Adelman, J. Anderson Jr, S. Anderson, J. Annis, N. Bahcall, J. Bakken, R. Barkhouser, S. Bastian, E. Berman , et al, The sloan digital sky survey: Technical summary, Astron J 120 (2000), 1579. - 18
L. Greengard and J. Strain, The fast gauss transform, SIAM J Sci Stat Comput 12(1) (1991), 79–94. - 19
C. Yang, R. Duraiswami, N. A. Gumerov, and L. Davis, Improved fast gauss transform and efficient kernel density estimation. International Conference on Computer Vision, 2003.

- 20
A. Beygelzimer, S. Kakade, and J. Langford, Cover trees for nearest neighbor, Proceedings of the 23rd International Conference on Machine Learning, New York, ACM, 2006, 97–104.

- 21
A. Smola and B. Scholkopf, Sparse greedy matrix approximation for machine learning, In Proceedings of the Seventeenth International Conference on Machine Learning, 2000, 911–918.

- 22
A. Smola and P. Bartlett, Sparse greedy Gaussian process regression, Adv Neural Inf Process Syst 13 (2001), 619–625. - 23
M. Ouimet and Y. Bengio, Greedy spectral embedding, Proceedings of the 10th International Workshop on Artificial Intelligence and Statistics, Citeseer, Barbados, West Indies, 2005, 253–260.

- 24
M. Seeger, C. Williams, N. Lawrence, and S. Dp, Fast forward selection to speed up sparse Gaussian process regression, In Workshop on AI and Statistics 9, 2003.

- 25
A. Appel, An efficient program for many-body simulation, SIAM J Sci Stat Comput 6 (1985), 85. - 26
J. Barnes and P. Hut, A Hierarchical O(N log N) force-calculation algorithm, Nature 324 (1986), 446–449. - 27
L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J Comput Phys 73 (1987), 325–348. - 28
P. Callahan and S. Kosaraju, A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields, JACM 42(1) 1995, 67–90. - 29
L. Ying, G. Biros, and D. Zorin, A kernel-independent adaptive fast multipole algorithm in two and three dimensions, J Comput Phys 196(2) (2004), 591–626. - 30
I. Lashuk, A. Chandramowlishwaran, H. Langston, T. Nguyen, R. Sampath, A. Shringarpure, R. Vuduc, L. Ying, D. Zorin, and G. Biros, A massively parallel adaptive fast-multipole method on heterogeneous architectures, Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, ACM, Portland, OR, 2009, 1–12. - 31
I. Al-Furajh, S. Aluru, S. Goil, and S. Ranka, Parallel construction of multidimensional binary search trees, IEEE Transactions on Parallel and Distributed Systems 11(2) (2002), 136–148. - 32
B. Choi, R. Komuravelli, V. Lu, H. Sung, R. Bocchino, S. Adve, and J. Hart, Parallel SAH kD tree construction, Proceedings of the Conference on High Performance Graphics, Eurographics Association, Saarbrücken, Germany, 2010, 77–86.

- 33
T. Liu, C. Rosenberg, and H. Rowley, Clustering billions of images with large scale nearest neighbor search, Proceedings of the Eighth IEEE Workshop on Applications of Computer Vision, IEEE Computer Society, Austin, TX, 2007, 28–.

- 34
J. Singh, C. Holt, T. Totsuka, A. Gupta, and J. Hennessy, Load balancing and data locality in adaptive hierarchical n-body methods: Barnes-hut, fast multipole, and radiosity, J. of Parallel & Distributed Comp 27(2) (1995), 118–141, - 35
F. Cruz, M. Knepley, and L. Barba, PetFMM-A dynamically load-balancing parallel fast multipole library, Arxiv preprint arXiv:0905 2637 (2009), 403–428.

- 36
P. Loh, W. Hsu, C. Wentong, and N. Sriskanthan, How network topology affects dynamic loading balancing, Parallel & Distributed Tech, IEEE 4(3) (1996), 25–35. - 37
J. K. Salmon, Parallel Hierarchical N-body Methods. Ph.D Thesis, California Institute of Technology, 1990.

- 38
J. Singh, J. Hennessy, and A. Gupta, Implications of hierarchical n-body methods for multiprocessor architectures, ACM Trans Comput Syst 13(2) 1995, 141–202. - 39
R. Riegel, A. Gray, and G. Richards, Massive-scale kernel discriminant analysis: mining for quasars, SIAM International Conference on Data Mining, Citeseer, Atlanta, GA, 2008.

- 40
P. Pacheco, Parallel Programming with MPI, Morgan Kaufmann, Burlington, MA, 1997.

- 41
G. Boyer, R. Riegel, N. Vasiloglou, D. Lee, L. Poorman, C. Mappus, N. Mehta, H. Ouyang, P. Ram, L. Tran, W. C. Wong, and A. Gray, MLPACK. http://mloss.org/software/view/152, Accessed on September, 2011 and October, 2011, 2009. - 42
S. Koranne, Boost C++ Libraries, Handbook of Open Source Tools, Springer, New York, 2011, 127–143. - 43
C. Sanderson, Armadillo: An Open Source C++ Linear Algebra Library for Fast Prototyping and Computationally Intensive Experiments, NICTA, Australia, Technical Report, 2010.

- 44
G. P. Contributors, GSL - GNU scientific library - GNU project - free software foundation (FSF). http://www.gnu.org/software/gsl/, Accessed on September, 2011 and October, 2011, 2010. - 45
NERSC Computational Systems. http://www.nersc.gov/users/computational-systems/ Accessed on September, 2011 and October, 2011. - 46
A. Ozakin and A. Gray, Submanifold density estimation, Advances in Neural Information Processing Systems 22 (2009), 1375–1382.

- 47
R. Sampath, H. Sundar, and S. Veerapaneni, Parallel fast gauss transform, In Supercomputing, 2010.

- 48
http://www.nvidia.com/object/cuda_home_new.html. Accessed on September, 2011 and October, 2011. - 49
http://www.top500.org. Accessed on September, 2011 and October, 2011. - 50
A. Moore, A. Connolly, C. Genovese, A. Gray, L. Grone, N. Kanidoris, R. Nichol, J. Schneider, A. Szalay, I. Szapudi, and L. Wasserman, Fast algorithms and efficient statistics: N-point correlation functions, In Proceedings of MPA/MPE/ESO Conference Mining the Sky, Garching, Germany, 2000.