SEARCH

SEARCH BY CITATION

REFERENCES

  • Ainsworth, S. E. (1999). The functions of multiple representations. Computer & Education, 33(2/3), 131152.
  • Bao, L., Zollman, D., Hogg, K., & Redish, E. F. (2002). Model analysis of fine structures of student models: An example with Newton's third law. American Journal of Physics, 70, 766778. Available at URL: http://www.physics.ohio-state.edu/∼lbao/papers.htm (accessed on 22.4.2004).
  • Brown, D. E. (1989). Students' concept of force: The importance of understanding Newton's third law. Physics Education, 24, 353358.
  • Brown, D. E. (1992). Using examples and analogies to remediate misconceptions in physics: Factors influencing conceptual change. Journal of Research in Science Teaching, 29, 1734.
  • Brown, D. E. (1993). Refocusing core intuitions: A concretizing role of analogy in conceptual change. Journal of Research in Science Teaching, 30, 12731290.
  • Brown, D. E., & Clement, J. (1989). Overcoming misconceptions by analogical reasoning: Abstract transfer versus explanatory model construction. Instructional Science, 18, 237261.
  • Camp, C. W., & Clement, J. J. (1994). Preconceptions in mechanics. Lessons dealing with students' conceptual difficulties. Dubuque, IA: Kendall/Hunt Publishing Company.
  • Carey, S. (1985). Conceptual change in childhood. Cambridge, MA: MIT Press.
  • Chi, M. T. H., Slotta, J. D., & de Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and Instruction, 4, 2743.
  • Clement, J. (1982). Students' preconceptions in introductory mechanics. American Journal of Physics, 50, 6671.
  • Clement, J., (1987) with the assistance of Brown, D., Camp, C., Kudukey, J., Minstrell, J., Palmer, D., Schultz, K., Shimabukuro, J., Steinberg, M., and Veneman, V., Overcoming students' misconceptions in physics: The role of anchoring intuitions and analogical validity. In J. D.Novak (Ed.), Proceedings of the Second International Seminar, Misconceptions and Educational Strategies in Science and Mathematics (Vol III, pp. 8497). Cornell University.
  • Crouch, C., & Mazur, E. (2001). Peer instruction: Ten years of experience and results. American Journal of Physics, 69, 970977.
  • diSessa, A. (1993). Towards an epistemology of physics. Cognition and Instruction, 10, 105225.
  • Dufresne, R., Leonard, W., & Gerace, W. (2002). Making sense of students' answers to multiple-choice questions. The Physics Teacher, 40, 174180.
  • Duit, R. (2004). Bibliography—STCSE students' and teachers' conceptions and science education. Online at <http://www.ipn.uni-kiel.de/aktuell/stcse/stcse.html>. Accessed on 22.4.2004.
  • Duit, R., & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education, 25, 671688.
  • Duit, R., Roth, W.-M., Komorek, M., & Wilbers, J. (2001). Fostering conceptual change by analogies—between Scylla and Charybdis. Learning and Instruction, 11, 283303.
  • Dykstra, D. I., Boyle, F. C., & Monarch, I. A. (1992). Studying conceptual change in learning physics. Science Education, 76(6), 615652.
  • Finegold, M., & Gorsky, P. (1991). Students' concepts of force as applied to related systems: A search for consistency. International Journal of Science Education, 13(1), 97113.
  • Giancoli, D. (1998). Physics—Principles with applications (5th ed.). New York: Prentice-Hall International.
  • Goldman, S. R. (2003). Learning in complex domains: When and why do multiple representations help? Learning and Instruction, 13, 239244.
  • Gunstone, R., McKittrick, B., & Mullhall, P. (1999). Structured cognitive discussions in senior high school physics: Student and teacher perceptions. Research in Science Education, 29(4), 527546.
  • Hake, R. (1998). Interactive-engagement vs traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses. American Journal of Physics, 66, 6474. Available at URL: http://www.physics.indiana.edu/∼sdi/welcome.html#z44 (accessed on 22.4.2004).
  • Halliday, D., Resnick, R., & Walker, J. (2001). Fundamentals of Physics (sixth ed.). New York: Wiley.
  • Halloun, I., Hake, R., Mosca, E., & Hestenes, D. (1995). Force concept inventory (Revised 1995). Password protected and available at URL: http://modeling.la.asu.edu/R&E/Research.html (accessed on 22.4.2004).
  • Halloun, I., & Hestenes, D. (1985). Common sense concepts about motion. American Journal of Physics, 53, 10561065.
  • Harrison, A., Grayson, D., & Treagust, D. (1999). Investigating a grade 11 students' evolving conceptions of heat and temperature. Journal of Research in Science Teaching, 36, 5587.
  • Hellingman, C. (1989). Do forces have twin brothers? Physics Education, 24, 3640.
  • Hellingman, C. (1992). Newton's third law revisited. Physics Education, 27, 112115.
  • Hestenes, D. (1996). Modeling method for physics teachers. Proceedings of the International Conference on Undergraduate Physics Education (College Park). Available at URL: http://modeling.la.asu.edu/modeling-HS.html (accessed on 22.4.2004).
  • Hestenes, D., Wells, M., & Swackhamer, G. (1992). Force concept inventory. The Physics Teacher, 30, 141158.
  • Jauhiainen, J., Koponen, I., & Lavonen, J. (2001). The force concept inventory in diagnosing the conceptual understanding of Newtonian mechanics in Finnish upper secondary schools. In M.Ahtee, O.Björkvist, E.Pehkonen, & V.Vatanen (Eds.), Research on mathematics and science education—From beliefs to cognition, from problem solving to understanding (pp. 101114). Jyväskylä: Institute for Educational Research, University of Jyväskylä.
  • Jiménez, J. D., & Perales, F. J. (1999). Es viable utilizar en la E.S.O. una representación simbólica de la fuerza como interacción? La didáctica de las ciencias experimentales. Tendencias actuales (pp. 589604). La Coruña: Servicio de Publicaciones de la Universidad.
  • Jiménez, J. D., & Perales, F. J. (2001). Graphic representation of force in secondary education: Analysis and alternative educational proposals. Physics Education, 36, 227235.
  • Jones, M. G., & Carter, G. (1998). Small groups and shared constructions. In J.Mintzes, J.Wandersee, & J.Novak (Eds.), Teaching science for understanding—A human constructivist view (pp. 261279). Cornell University, Ithaca, NY: Academic.
  • Koponen, I., Jauhiainen, J., & Lavonen, J. (2000). A Finnish translation of the 1995 version of the force concept inventory, available upon request. Department of Physics, University of Helsinki.
  • Kress, G., Jewitt, C., Ogborn, J., & Tsatsarelis, C. (2001). Multimodal teaching and learning: The rhetorics of the science classroom. London: Continuum.
  • Leach, J., & Scott, P. (1995). The demands of learning science concepts: Issues of theory and practise. School Science Review, 76(277), 4752.
  • Leach, J., & Scott, P. (2002). Designing and evaluating science teaching sequences: An approach drawing upon the concept of learning demand and a social constructivist perspective on learning. Studies in Science Education, 38, 115142.
  • Leach, J., & Scott, P. (2003). Individual and sociocultural views of learning in science education. Science and Education, 12(1), 91113.
  • Maloney, D. (1990). Forces as interactions. The Physics Teacher, 28, 386390.
  • Mason, L. (1998). Sharing cognition to construct scientific knowledge in school context: The role of oral and written discourse. Instructional Science, 26, 359389.
  • McDermott, L. C., & Redish, E. F. (1999). Resource letter PER-1: Physics education research. American Journal of Physics, 67, 755767. Available at URL: http://www.physics.umd.edu/rgroups/ripe/papers/rl.htm (accessed on 22.4.2004).
  • McDermott, L. C., Schaffer, P., & the PERG at the University of Washington (1998). Tutorials for introductory physics—Workbook (preliminary ed.) Englewood Cliffs, NJ: Prentice-Hall.
  • Meloth, M., & Deering, P. (1999). The role of the teacher in promoting cognitive processing during collaborative learning. In A. M.O'Donnell & A.King (Eds.), Cognitive perspectives on peer learning (pp. 235255). Mahwah, NJ: Erlbaum.
  • Mercer, N., & Wegeriff, R. E. (1999). Is ‘explanatory talk’ productive talk? In K.Littleton & P.Light (Eds.), Learning with computers (pp. 79101). London: Routledge.
  • Meltzer, D. (2002). Issues related to data analysis and quantitative methods in PER. In S.Franklin, K.Cummings, & J.Marx (Eds.), Proceedings of the 2002 Physics Education Research Conference (pp. 2124). New York: PERC Publishing.
  • Minstrell, J. (1982). Explaining “at rest” condition of an object. The Physics Teacher, 20, 1014.
  • Montanero, M., Suero, M. I., Perez, A. L., & Pardo, P. J. (2002). Implicit theories of static interactions between two bodies. Physics Education, 37, 318323.
  • Mortimer, E., & Scott, P. (2003). Meaning making in secondary science classrooms. Maidenhead/Philadelphia, PA: Open University Press/McGraw Hill.
  • Palmer, D. (1997). The effect of context on students' reasoning about forces. International Journal of Science Education, 6, 681696.
  • Physics Textbook Review Committee (1998). Quibbles, misunderstandings, and egregious mistakes. The Physics Teacher, 37, 297305.
  • Pintrich, P. R., Marx, R. W., & Boyle, R. A. (1993). Beyond cold conceptual change: The role of motivational beliefs and classroom contextual factors in the process of conceptual change. Review of Educational Research, 63, 167200.
  • Reif, F. (1995a). Millikan Lecture 1994: Understanding and teaching important scientific thought processes. American Journal of Physics, 63, 1732.
  • Reif, F. (1995b). Understanding basic mechanics—Workbook. New York: Wiley.
  • Reif, F., & Heller, J. I. (1982). Knowledge structure and problem solving in physics. Educational Psychologist, 17, 102127.
  • Rosenshine, B., Meister, C., & Chapman, S. (1996). Teaching students to generate questions: A review of the intervention. Review of Educational Research, 66(2), 181221.
  • Savinainen, A. (2004). High school students' conceptual coherence of qualitative knowledge in the case of the force concept. Dissertations 41, Department of Physics, University of Joensuu.
  • Savinainen, A., & Scott, P. (2002). Using the Force Concept Inventory to monitor student learning and to plan teaching. Physics Education, 37, 5358. Available at URL: http://kotisivu.mtv3.fi/physics/ (accessed on 22.4.2004.)
  • Savinainen, A., & Viiri, J. (2003). Using the Force Concept Inventory to characterise students' conceptual coherence. In L. Haapasalo & K. Sormunen (Eds.), Towards meaningful mathematics and science education, Proceeding on the IXX Symposium of Finnish Mathematics and Science Education Research Association. Bulletin of Faculty of Education, no. 86, University of Joensuu (pp. 142152). Available at URL: http://kotisivu.mtv3.fi/physics/ (accessed on 22.4.2004) .
  • Schoultz, J., Säljö, R., & Wyndham, J. (2001). Heavenly talk: Discourse, artifacts, and children's understanding of elementary astronomy. Human Development, 44, 103118.
  • Scott, P. (1998). Teacher talk and meaning making in science classrooms: A review of studies from a Vygotskian perspective. Studies in Science Education, 32, 4580.
  • Sequira, M., & Leite, L. (1991). Alternative conceptions and history of science in physics teacher education. Science Education, 75, 4556.
  • Steinberg, R., & Sabella, M. (1997). Performance on multiple-choice diagnostics and complementary exam problems. The Physics Teacher, 35, 150155.
  • Terry, C., & Jones, G. (1986). Alternative frameworks: Newton's third law and conceptual change. European Journal of Science Education, 8, 291298.
  • Thornton, R. K. (1995). Conceptual dynamics: Changing students views of force and motion. In C.Tarsitani, C.Bernandini, & M.Vincentini (Eds.), Thinking physics for teaching (pp. 157183). London: Plenum.
  • Thornton, R., & Sokoloff, D. (1998). Assessing student learning of Newton's laws: The force and motion conceptual evaluation and the evaluation of active learning laboratory and lecture curricula. American Journal of Physics, 66, 338351.
  • Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2003). The role of submicroscopic and symbolic representations in chemical explanations. International Journal of Science Education, 25, 13531368.
  • Treagust, D. F., Harrison, A. G., & Venville, G. J. (1996). Using analogical teaching approach to engender conceptual change. International Journal of Science Education, 18, 213229.
  • Turner, L. (2003). System schemas. The Physics Teacher, 41, 404408.
  • Tyson, L., Venville, G., Harrison, A., & Treagust, D. (1997). A multidimensional framework for interpreting conceptual change events in the classroom. Science Education, 81, 387404.
  • Van Heuvelen, A. (1991). Overview, case study physics. American Journal of Physics, 59(10), 898907.
  • van Someren, M. W., Reimann, P., Boshuisen, H. P. A., & de Jong, T. (Eds.) (1998). Learning with multiple representations. Oxford: Elsevier.
  • Vosniadou, S., & Ioannides, C. (1998). From conceptual development to science education: A psychological point of view. Internal Journal of Science Education, 20, 12131230.
  • Vosniadou, S., Ioannides, C., Dimitrakopoulou, A., & Papademetriou, E. (2001). Designing learning environments to promote conceptual change in science. Learning and Instruction, 11, 381419.
  • Welzel, M., & Roth, W.-M. (1998). Do interviews really assess students' knowledge? International Journal of Science Education, 20, 2544.