SEARCH

SEARCH BY CITATION

REFERENCE

  • Andersson, B. (1990). Pupils' conceptions of matter and its transformations (age 12–16). Studies in Science Education, 18, 5385.
  • Arcà, M. (1984). Strategies for categorizing change in scientific research and in children's thought. Human Development, 27, 335341.
  • Arcà, M., Guidoni, P., & Mazzoli, P. (1983). Structures of understanding at the root of science education, Part I: Experience, language & knowledge. European Journal of Science Education, 5(4), 367375.
  • Arcà, M., Guidoni, P., & Mazzoli, P. (1984). Structures of understanding at the root of science education, Part II: Meaning for formalization. European Journal of Science Education, 6(4), 311319.
  • Au, K.-F. (1994). Developing an intuitive understanding of substance kinds. Cognitive Psychology, 27, 71111.
  • Ault, C. R., Jr., Novak, J. D., & Gowin, D. B. (1984). Constructing Vee maps for clinical interviews on molecules concepts. Science Education, 68, 441442.
  • Barnes, D., & Todd, F. (1995). Communication and learning revisited, making meaning through talk. Portsmouth, NH: Boynton/Cook Publishers/Heinemann.
  • Ben-Zvi, R., Eylon, R., & Silberstein, J. (1986). Is an atom of copper malleable? Journal of Chemical Education, 63, 6466.
  • Beson, H., & Viennot, L. (2004). Using models at the mesoscopic scale in teaching physics: Two experimental interventions in solid friction and fluid static. International Journal of Science Education, 26(9), 10831110.
  • Besson, U., Viennot, L., & Lega, J. (2003). A mesoscopic model of liquids for teaching fluid static. In D.Psillos, P.Kariotoglou, V.Tselfes, & E.Hatzikraniotis (Eds.), Science education research in the knowledge based society (pp. 221229). Dordrecht, the Netherlands: Kluwer.
  • Buckley, B. C. (2000). Interactive multimedia and model-based learning in biology. International Journal of Science Education, 22(9), 895935.
  • Chin, C., & Chia, L. (2004). Problem-based learning: Using students' questions to drive knowledge construction. Science Education, 88(5), 707727.
  • Clement, J. (2000). Model based learning as a key research area for science education. International Journal of Science Education, 22(9), 10411053.
  • Claxton, G. (2000). The intuitive practitioner. Buckingham, UK: Open University Press.
  • Coulthard, M. (Ed.). (1992). Advances in spoken discourse analysis. London: Routledge.
  • Driver, R. (1985). Beyond appearances: The conservation of matter under physical and chemical transformations. In R.Driver, E.Guesne, & A.Tiberghien (Eds.), Children's ideas in science Philadelphia: Open University Press.
  • Driver, R., Asoko, H., Leach, J., Mortimer, E., & Scot, P. (1994). Constructing scientific knowledge in the classroom. Educational Researcher, 23, 512.
  • Duschl, R. (1990). Restructuring science education: The importance of theories and their development. New York: Teachers College Press.
  • Duschl, R. (2000). Making the nature of science explicit. In R.Millar, J.Osborne, & J.Leach (Eds.), Improving science education (pp. 185206). Philadelphia: Open University Press.
  • Duschl, R., & Hamilton, R. (1998). Conceptual change in science in the learning of science. In B.Fraser & K.Tobin (Eds.), International handbook of science education (pp. 10471066). Dordrecht, the Netherlands: Kluwer.
  • Edwards, J., & Marland, P. (1984). What are students really thinking? Educational Leadership, 42(3), 6367.
  • Erickson, F. (1982). Classroom discourse as improvisation: Relationships between academic task structure and social participation structure in lessons. In L. C.Wilkinson (Ed.), Communicating in the classroom (pp. 153182). New York: Academic.
  • Giere, R. (1988). Explaining science: A cognitive approach. Chicago: University of Chicago.
  • Giere, R. (1997). Understanding scientific reasoning. Fort Worth, TX: Harcourt Brace College.
  • Gilbert, J., & Boulter, C. (2000). Models and modelling in science education. Dordrecht, the Netherlands: Kluwer.
  • Gobert, J. D., & Buckley, B. C. (2000). Introduction to model-based in teaching and learning in science education. International Journal of Science Education, 22(9), 891894.
  • Grandy, R. (2003). What are models and why do we need them? Science & Education, 12, 773777.
  • Guidoni, P. (1987). On natural thinking. European Journal of Science Education, 7(2), 133140.
  • Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models. International Journal of Science Education, 22(9), 10111026.
  • Herrenkohl, L., Palincsar, A. M., Dewater, M. S., & Kawasaki, K. (1999). Developing scientific communities in classroom: A sociocognitive approach. Journal of Learning Science, 8(3/4), 451493.
  • Hymes, D. (1972). Models of the interaction of language and social life. In J.Gumperz & D.Hymes (Eds.), Directions in sociolingüístics: The ethnography of communication New York: Holt, Rinehart, & Winston.
  • Izquierdo, M., Sanmarti, N., & Espinet, M. (1998). Fundamentación y diseño de las prácticas escolares de ciencias experimentales [Design and fundamentation of experimental science school practices]. Enseñanza de las Ciencias, 17(1), 4560.
  • Izquierdo, M., Espinet, M., Garcia, M. P., Pujol, R. M., & Sanmarti, N. (1999). Caracterización y fundamentación dela Ciencia Escolar [Characterization and fundamentation of school science]. Enseñanza de las Ciencias, Número Extra 7991.
  • Joshua, J., & Dupin, R. (1993). Introduction à la didactique des sciences et des mathématiques [Introduction to didactic of science and mathematics]. Univ. de France Press.
  • Krnel, D., Watson, R., & Glasar, S. A. (1998). Survey of research related to the development of the concept of “matter.” International Journal of Science Education, 20(3), 257289.
  • Krnel, D., Watson, R., & Glazar, S. A. (2003). The development of the concept of “matter”: A cross-age study of how children classify materials. Science Education, 87, 621639.
  • Laughlin, R. B., & Pines, D. (1999). The theory of everything. Proceedings of the National Academy of Sciences Online, 97(1), 2831.
  • Laughlin, R. B., Pines, D., Schmalian, J., Stojkovic, B. P., & Wolynes, P. (1999). The middle way. Mesoscopic organization in matter. Paper presented at the workshop at Institute for Complex Adaptative Matter, Los Alamos, NM, August 24–28, 1999.
  • Lehrer, R., & Schauble, L. (2005). Developing modeling and argument in elementary grades. In T. A.Romberg, T. P.Carpenter, & F.Dremock (Eds.), Understanding mathematics and science matters (pp. 2953). Mahwah, NJ: Lawrence Erlbaum.
  • Lemke, J. (1990). Talking science: Language, learning & science. Norwood, NJ: Ablex.
  • Lhen, J. M. (1995). Supramolecular chemistry. Weinheim, Germany: VCH.
  • Meheut, M., & Chomat, A. (1990). Les limites de l'atomisme enfantin: experimentation d'une demarche d'elaboration d'un modele particulaire par des eleves de college [Limits of children' atomism: Experimenting a way to elaborate a particular model with collage students]. European Journal of Psychology of Education, 4, 417437.
  • Mercer, N. (1996). The quality of talk in children's collaborative activity in the classroom. Learning and Instruction, 6(4), 359377.
  • Merino, C., & Sanmartí, N. (2006). Students' spontaneous use of a particulate model for chemical change. A phenomenographic approach (pp. 155156). Paper presented at 8th European Conference on Research in Chemical Education, Budapest. Book of Abstracts.
  • Merrian, S. (1998). Qualitative research and case study applications in education. San Francisco, CA: Jossey-Bass.
  • Metz, K. E. (1993). Preschoolers developing knowledge of the pan balance: From new representation to transformed problem solving. Cognition & Instruction, 11, 3193.
  • Mortimer, E. F. (1998). Multivoicedness and univocality in classroom discourse: An example of theory of matter. International Journal of Science Education, 20(1), 6782.
  • Mortimer, E. F., & Scott, P. H. (2003). Meaning making in secondary science classrooms. Maidenhead, UK: Open University Press.
  • Nersessian, N. J. (2002). The cognitive basis of model based reasoning in science. In P.Carruthers, S.Stich, & M.Siegal (Eds.), The cognitive basis of science Cambridge, UK: Cambridge University Press.
  • Ogborn, J., Kress, G., Martins, I., & McGilligudy, K. (1996). Explaining science. Buckingham, UK: Open University Press.
  • Pakarek, S. (1999). Leçons de conversation [Lessons of conversation]. Eds. Univ. Fribourg, Switzerland.
  • Pontecorvo, C. (1992). Interazione sociale e acquisizione di conoscenza [Social interaction and knowledge acquisition]. Firenze: La nueva Italia scientifica.
  • Psathas, G. (1995). Conversation analysis. Qualitative research methods series no. 35. London: Sage.
  • Renstrom, L., Andersson, B., & Marton, F. (1990). Students' conceptions of matter. Journal of Educational Psychology, 82(3), 555569.
  • Resnick, L. B., Salmon M., Zeitz, C. M., Wathen, S. H., & Holowchak, M. (1993). Reasoning in conversation. Cognition & Instruction, 11(3/4), 347364.
  • Rumelhard, G. (1988). Statut et role des modèles dans la travail scientifique et dans l'enseignament de la biologie [Status and role of models in scientific work and teaching biology]. Aster, 7, 2152.
  • Sanmarti, N., Izquierdo, M., & Watson, R. (1995). The sustantialisation of properties in students thinking and in the history of science. Science & Education, 4, 349369.
  • Smith, C., Anderson, C. W., Krajcik, J., & Coppola, B. (2004). Implications of research on children's learning for assessment: Matter and atomic molecular theory. Paper commissioned by the Committee on Test Design for K-12 Science Achievement, Center for Education, National Research Council.
  • Stavy, R. (1991). Children's ideas about matter. School Science and Mathematics, 91(6), 240244.
  • Sutton, C. (1992). Words, science and learning. Buckingham, UK: Open University Press.
  • Tiberghien, A. (1994). Modeling as a basis for analyzing teaching-learning situations. Learning and Instruction, 4, 7187.
  • Tobin, K. (2000). Interpretative research in science education. In A. E.Nelly & R. A.Lesh (Eds.), Handbook of research design in mathematics and science education Mahwah, NJ: Lawrence Erlbaum.
  • White, B. Y., & Frederiksen, J. R. (1998). Inquiry, modeling, and metacognition: Making science accessible to all students. Cognition and Instruction, 16, 3118.