SEARCH

SEARCH BY CITATION

REFERENCES

  • Allchin, D. (2005). The dilemma of dominance. Biology and Philosophy, 20, 427451.
  • Andersson, B. (1986). The experiential gestalt of causation: A common core to pupils' preconceptions in science. European Journal of Science Education, 8, 155171.
  • Andersson, B. (1990). Pupils' conceptions of matter and its transformations (age 12–16). Studies in Science Education, 18, 5385.
  • Barker, V. (2000). Beyond appearances: Students' misconceptions about basic chemical ideas, Royal Society of Chemistry, London. Retrieved August 9, 2007, from http://www.chemsoc.org/networks/learnnet/miscon.htm.
  • Ben-Zvi, R., Nylon, B.-S., & Silberstein, J. (1987a). Students' visualization of a chemical reaction. Education in Chemistry, 24, 177120.
  • Ben-Zvi, R., Nylon, B.-S., & Silberstein, J. (1987b). Is an atom of copper malleable? Journal of Chemical Education, 63, 6466.
  • Boo, H. K., & Watson, J. R. (2001). Progression in high-school students' (aged 16–18) conceptualization about chemical reactions in solution. Science Education, 85, 568585.
  • Campanario, J. M., & Otero, J. C. (2000). Más allá de las ideas previas como dificultades de aprendizaje: las pautas de pensamiento, las concepciones epistemológicas y las estrategias metacognitivas de los alumnos de ciencias [Beyond misconceptions in learning science: Science students' thinking patterns, epistemological conceptions and metacognitive strategies]. Enseñanza de las Ciencias, 18(2), 155169.
  • Chi, M. T. H. (2005). Commonsense conceptions of emergent processes: Why some misconceptions are robust. The Journal of the Learning Sciences, 14(2), 161199.
  • de Cudmani, L. C., Pesa, M. A., & Salinas, J. (2000). Hacia un modelo integrador para el aprendizaje de las ciencias [Towards an integrated model in science learning]. Enseñanza de las Ciencias, 18(1), 313.
  • Donovan, M. P. (1997). The vocabulary of biology and the problem of semantics. Journal of College Science Teaching, 26, 381382.
  • Driver, R., Guesne, E., & Tiberghien, A. (1985). Children's ideas in science. Buckingham, England: Open University Press.
  • Driver, R., Squires, A., Rushword, P., & Wood-Robinson, V. (1994). Making sense of secondary science: Research into children's ideas. London: Routledge.
  • Duit, R. (2004). Bibliography STCSE: Students' and teachers' conceptions and science education. IPN, Leibniz Institute for Science Education, Kiel, Germany. Retrieved August 9, 2007, from http://www.ipn.uni-kiel.de/aktuell/stcse/.
  • Furió, C., & Furió, C. (2000). Dificultades conceptuales y epistemológicas en el aprendizaje de los procesos químicos [Conceptual and epistemological difficulties in learning about chemical processes]. Educación Química, 11(3), 300308.
  • Garnett, P. J., Garnett, P. J., & Hackling, M. W. (1995). Students' alternative conceptions in chemistry: A review of research and implications for teaching and learning. Studies in Science Education, 25, 6995.
  • Greene, J. C., Caracelli, V. J., & Graham, W. F. (1989). Toward a conceptual framework for mixed-method evaluation designs. Educational Evaluation and Policy Analysis, 11, 255274.
  • Gutierrez, R., & Ogborn, J. (1992). A causal framework for analyzing alternative conceptions. International Journal of Science Education, 14, 201220.
  • Halloun, I. A. & Hestenes, D. (1985). Common sense concepts about motion. American Journal of Physics, 53, 10561065.
  • Hayes, P. (1979). The naïve physics manifesto. In D.Michie (Ed.), Expert systems in the microelectronic age (pp. 242270). Edinburgh, Scotland: Edinburgh University Press.
  • Hilton, D. (2002). Thinking about causality: pragmatic, social and scientific rationality. In P.Carruthers, S.Stich, & M.Siegal (Eds.), The cognitive basis of science (pp. 211231). Cambridge, England: Cambridge University Press.
  • Hmelo-Silver, C. E., & Azevedo, R. (2006). Understanding complex systems: Some core challenges. The Journal of the Learning Sciences, 15(1), 5361.
  • Jacobson, M. J., & Wilensky, U. (2006). Complex systems in education: Scientific and educational importance and implications for the learning sciences. The Journal of the Learning Sciences, 15(1), 1134.
  • Luisi, P. L. (2002). Emergence in chemistry: Chemistry as the embodiment of emergence. Foundations of Chemistry, 4, 183200.
  • Nakhleh, M. B. (1992). Why some students don't learn chemistry. Journal of Chemical Education, 69, 191196.
  • Penner, D. E. (2000). Explaining systems: Investigating middle school students' understanding of emergent phenomena. Journal of Research in Science Teaching, 37(8), 784806.
  • Pozo, J. I., & Gómez Crespo, M. A. (1998). Aprender y Enseñar Ciencia [Learning and teaching science]. Madrid: Morata.
  • Stains, M., & Talanquer, V. (2007). Classification schemes used by chemistry students to identify chemical substances. International Journal of Science Education, 29(5), 643661; Erratum, International Journal of Science Education, 29(7), 935938.
  • Taber, K. (2001). Building the structural concepts of chemistry: Some considerations from educational research. Chemistry Education: Research and Practice in Europe, 2(2), 123158.
  • Taber. K. (2002). Chemical misconceptions—Prevention, diagnosis and cure: Vol. I: Theoretical background. London: Royal Society of Chemistry.
  • Talanquer, V. (2006). Common sense chemistry: A model for understanding students' alternative conceptions. Journal of Chemical Education, 83(5), 811816.
  • Viennot, L. (2001). Reasoning in physics: The part of common sense. Dordrecht, The Netherlands: Kluwer Academic Publishers.
  • Wilensy, U., & Resnick, M. (1999). Thinking in levels: A dynamic systems approach to making sense of the world. Journal of Science Education and Technology, 8(1), 319.