SEARCH

SEARCH BY CITATION

REFERENCES

  • AAAS. (1993). Benchmarks for science literacy. New York: Oxford University Press.
  • AAAS. (2001). Atlas of scientific literacy. Washington, DC: American Association for the Advancement of Science.
  • Abd-El-Khalick, F., BouJaoude, S., Duschl, R., Lederman, N. G., Mamlok-Naaman, R., Hofstein, A., et al. (2004). Inquiry in science education: International perspectives. Science Education, 88(3), 397419.
  • Aikenhead, G. S. (2005). Science education for everyday life: Evidence-based practice. New York: Teachers College Press.
  • Anderson, L. W., & Krathwohl, D. R. (Eds.). (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom's taxonomy of educational objectives. New York: Longman.
  • Barron, B., Schwartz, D. L., Vye, N. J., Moore, A., Petrosino, A., Zech, L., et al. (1998). Doing with understanding: Lessons from research on problem- and project-based learning. Journal of the Learning Sciences, 7(3/4), 271311.
  • Bell, P., & Linn, M. C. (2000). Scientific arguments as learning artifacts: Designing for learning from the web with KIE. International Journal of Science Education, 22, 797817.
  • Black, P., & Atkin, J. M. (Eds.). (1996). Changing the subject: Innovations in science, mathematics and technology education. London: Routledge/OECD.
  • Blumenfeld, P., & Krajcik, J. (2006). Project-based learning. In R. K.Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 333354). New York: Cambridge University Press.
  • Blumenfeld, P., Soloway, E., Marx, R., Krajcik, J., Guzdial, M., & Palincsar, A. S. (1991). Motivating project-based learning: Sustaining the doing, supporting the learning. Educational Psychologist, 26, 369398.
  • Brown, A. L. (1992). Design experiments: Theoretical and methodological challenges in creating complex interventions in classroom settings. The Journal of the Learning Sciences, 2(2), 141178.
  • Bruozas, M., Finn, L.-E., Tzou, C., Hug, B., Kuhn, L., & Reiser, B. J. (2004). Struggle in natural environments: What will survive? In J.Krajcik & B. J.Reiser (Eds.), IQWST: Investigating and questioning our world through science and technology. Evanston, IL: Northwestern University.
  • Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32(1), 913.
  • Collins, A., Brown, J. S., & Newman, S. E. (1989). Cognitive apprenticeship: Teaching the crafts of reading, writing, and mathematics. In L. B.Resnick (Ed.), Knowing, learning, and instruction: Essays in honor of Robert Glaser (pp. 453494). Hillsdale, NJ: Erlbaum.
  • Dick, W., Carey, L., & Carey, J. O. (2001). The systematic design of instruction (5th ed.). New York: Longman.
  • Duschl, R. A., Schweingruber, H. A., & Shouse, A. W. (Eds.). (2007). Taking science to school: Learning and teaching science in grades K-8. Washington, DC: National Academies Press.
  • Edelson, D. C. (2001). Learning-for-use: A framework for integrating content and process learning in the design of inquiry activities. Journal of Research in Science Teaching, 38(3), 355385.
  • Edelson, D. C. (2002). Design research: What we learn when we engage in design. The Journal of the Learning Sciences, 11(1), 105121.
  • Ertl, H. (2006). Educational standards and the changing discourse on education: The reception and consequences of the PISA study in Germany. Oxford Review of Education, 32(5), 619634.
  • Fensham, P. J., & Harlen, W. (1999). School science and public understanding of science. International Journal of Science Education, 21(7), 755763.
  • Fretz, E. B., Wu, H.-K., Zhang, B., Davis, E. A., Krajcik, J. S., & Soloway, E. (2002). An investigation of software scaffolds supporting modeling practices. Research in Science Education, 32(4), 567589.
  • Gagné, R. M., Wager, W. W., Golas, K. C., & Keller, J. M. (2005). Principles of instructional design. Belmont, CA: Wadsworth.
  • Harris, C. J., McNeill, K. L., Lizotte, D. J., Marx, R., & Krajcik, J. (2006). Usable assessments for teaching science content and inquiry standards. In M.McMahon, P.Simmons, R.Sommers, D.DeBaets, & F.Crowley (Eds.), Assessment in science: Practical experiences and education research (pp. 6788). Arlington, VA: National Science Teachers Association Press.
  • Kesidou, S., & Roseman, J. E. (2002). How well do middle school science programs measure up? Findings from Project 2061's curriculum review. Journal of Research in Science Teaching, 39(6), 522549.
  • Knapp, M. S. (1997). Between systemic reforms and the mathematics and science classroom: The dynamics of innovation, implementation, and professional learning. Review of Educational Research, 67(2), 227266.
  • Kolodner, J. L., Camp, P. J., Crismond, D., Fasse, B., Gray, J., Holbrook, J., et al. (2003). Problem-based learning meets case-based reasoning in the middle-school science classroom: Putting learning by design into practice. The Journal of the Learning Sciences, 12(4), 495547.
  • Krajcik, J., & Czerniak, C. M. (2007). Teaching science in elementary and middle school: A project-based approach. Mahwah, NJ: Erlbaum.
  • Lehrer, R., & Schauble, L. (2006). Scientific thinking and science literacy: Supporting development in learning in contexts. In W.Damon, R. M.Lerner, K. A.Renninger, & I. E.Sigel (Eds.), Handbook of child psychology (6th ed., Vol. 4) Hoboken, NJ: Wiley.
  • Linn, M. C., Bell, P., & Davis, E. A. (2004). Internet environments for science education. Mahwah, NJ: Erlbaum.
  • Linn, M. C., & Hsi, S. (2000). Computers, teachers, peers: Science learning partners. Mahwah, NJ: Erlbaum.
  • Marx, R. W., Blumenfeld, P. C., Krajcik, J. S., Fishman, B., Soloway, E., Geier, R., et al. (2004). Inquiry-based science in the middle grades: Assessment of learning in urban systemic reform. Journal of Research in Science Teaching, 41(10), 10631080.
  • McComas, W. F., & Olson, J. K. (1998). The nature of science in international science education standards. In W. F.McComas (Ed.), The nature of science in science education: Rationales and strategies (pp. 4152). Dordrecht, The Netherlands: Kluwer.
  • McLaughlin, M. W., & Shepard, L. A. (1995). Improving education through standards-based reform. A report by the National Academy of Education panel on standards-based education reform. Stanford, CA: National Academy of Education, Stanford University.
  • McNeill, K. L., Harris, C. J., Heitzman, M., Lizotte, D. J., Sutherland, L. M., & Krajcik, J. (2004). How can I make new stuff from old stuff? In J.Krajcik & B. J.Reiser (Eds.), IQWST: Investigating and questioning our world through science and technology. Ann Arbor, MI: University of Michigan.
  • McNeill, K. L., & Krajcik, J. (2007). Middle school students' use of appropriate and inappropriate evidence in writing scientific explanations. In M. C.Lovett & P.Shah (Eds.), Thinking with data (pp. 233265). Mahwah, NJ: Erlbaum.
  • McNeill, K. L., & Krajcik, J. (in press). Scientific explanations: Characterizing and evaluating the effects of teachers' instructional practices on student learning. Journal of Research in Science Teaching.
  • McNeill, K. L., Lizotte, D. J., Krajcik, J., & Marx, R. W. (2006). Supporting students' construction of scientific explanations by fading scaffolds in instructional materials. The Journal of the Learning Sciences, 15(2), 153191.
  • Millar, R., & Osborne, J. (1998). Beyond 2000: Science education for the future. London: King's College.
  • Moje, E. B., Peek-Brown, D., Sutherland, L. M., Marx, R., Blumenfeld, P., & Krajcik, J. (2004). Explaining explanations: Developing scientific literacy in middle-school project-based science reforms. In D.Strickland & D. E.Alvermann (Eds.), Bridging the gap: Improving literacy learning for preadolescent and adolescent learners in grades 4–12 (pp. 227251). New York: Teachers College Press.
  • NRC. (1996). National Science Education Standards. Washington, DC: National Research Council.
  • OECD. (2000). Measuring student knowledge and skills: The PISA 2000 assessment of reading, mathematical and scientific literacy. Paris: Organisation for Economic Cooperation and Development.
  • Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 9941020.
  • Perkins, D. (1998). What is understanding? In M. S.Wiske (Ed.), Teaching for understanding: Linking research with practice (pp. 3958). San Francisco: Jossey-Bass.
  • Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J., Fretz, E., Duncan, R. G., et al. (2004). A scaffolding design framework for software to support science inquiry. The Journal of the Learning Sciences, 13(3), 337386.
  • Reiser, B. J., Tabak, I., Sandoval, W. A., Smith, B. K., Steinmuller, F., & Leone, A. J. (2001). BGuILE: Strategic and conceptual scaffolds for scientific inquiry in biology classrooms. In S. M.Carver & D.Klahr (Eds.), Cognition and instruction: Twenty-five years of progress (pp. 263305). Mahwah, NJ: Erlbaum.
  • Rivet, A., & Krajcik, J. S. (2004). Achieving standards in urban systemic reform: An example of a sixth grade project-based science curriculum. Journal of Research in Science Teaching, 41(7), 669692.
  • Sandoval, W. A. (2003). Conceptual and epistemic aspects of students' scientific explanations. Journal of the Learning Sciences, 12(1), 551.
  • Sandoval, W. A., & Reiser, B. J. (2004). Explanation-driven inquiry: Integrating conceptual and epistemic scaffolds for scientific inquiry. Science Education, 88(3), 345372.
  • Schauble, L., Klopfer, L. E., & Raghavan, K. (1991). Students' transition from an engineering model to a science model of experimentation. Journal of Research in Science Teaching, 28, 859882.
  • Schmidt, W. H., Wang, H. C., & McKnight, C. C. (2005). Curriculum coherence: An examination of U.S. mathematics and science content standards from an international perspective. Journal of Curriculum Studies, 37(5), 525559.
  • Schneider, R. M., Krajcik, J., & Blumenfeld, P. (2005). Enacting reform-based science materials: The range of teacher enactments in reform classrooms. Journal of Research in Science Teaching, 42(3), 283312.
  • Sherin, B. L., Edelson, D., & Brown, M. (2004). On the content of task-structured curricula. In L. B.Flick & N. G.Lederman (Eds.), Scientific inquiry and nature of science: Implications for teaching, learning, and teacher education (pp. 221248). Dordrecht, The Netherlands: Kluwer.
  • Singer, J., Marx, R. W., Krajcik, J., & Chambers, J. C. (2000). Constructing extended inquiry projects: Curriculum materials for science education reform. Educational Psychologist, 35, 165178.
  • Smith, M. S., & O'Day, J. (1991). Systemic school reform. In S. H.Fuhrman & B.Malen (Eds.), The politics of curriculum and testing (pp. 233267). Washington, DC: Falmer Press.
  • Spillane, J. P. (2004). Standards deviation: How schools misunderstand education policy. Cambridge, MA: Harvard University Press.
  • Tal, T., & Kedmi, Y. (2006). Teaching socioscientific issues: Classroom culture and students' performances. Cultural Studies of Science Education, 1(4), 615644.
  • The Design-Based Research Collective. (2003). Design-based research: An emerging paradigm for educational inquiry. Educational Researcher, 32(1), 58.
  • Tomorrow 98. (1992). Report of the superior committee on science, mathematics and technology education in Israel. Jerusalem: The Ministry of Education and Culture.
  • Tyler, R. W., Gagné, R. M., & Scriven, M. (1967). Perspectives of curriculum evaluation. Chicago: Rand McNally.
  • Wiggins, G. P., & McTighe, J. (1998). Understanding by design. Alexandria, VA: Association for Supervision and Curriculum Development.
  • Wilson, M. R., & Berenthal, M. W. (2006). Systems for state science assessment. Washington, DC: National Academies Press.
  • Zohar, A., & Nemet, F. (2002). Fostering students' knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39(1), 3562.