SEARCH

SEARCH BY CITATION

REFERENCES

  • American Association for the Advancement of Science. (1993). Benchmarks for science literacy. New York: Oxford University Press.
  • Ball, D. L., & Cohen, D. K. (1996). Reform by the book: What is—or might be—the role of curriculum materials in teacher learning and instructional reform? Educational Researcher, 25(9), 68, 14.
  • Bell, P., & Linn, M. (2000). Scientific arguments as learning artifacts: Designing for learning from the web with KIE. International Journal of Science Education, 22(8), 797817.
  • Black, P. (2003). The importance of everyday assessment. In J. M.Atkin & J. E.Coffey (Eds.), Everyday assessment in the science classroom (pp. 111). Arlington, VA: NSTA Press.
  • Blumenfeld, P., & Meece, J. L. (1988). Task factors, teacher behavior, and students' involvement and use of learning strategies in science. The Elementary School Journal, 88(3), 235250.
  • Bransford, J., Brown, A., & Cocking, R. (Eds.) (2000). How people learn: Brain, mind, experience and school. Washington, DC: National Academy Press.
  • Chin, C., & Brown, D. E. (2000). Learning in science: A comparison of deep and surface approaches. Journal of Research in Science Teaching, 37(2), 109138.
  • Crawford, B. A. (2000). Embracing the essence of inquiry: New roles for science teachers. Journal of Research in Science Teaching, 37(9), 916937.
  • Davis, E. A., & Krajcik, J. (2005). Designing educative curriculum materials to promote teacher learning. Educational Researcher, 34(3), 314.
  • Driver, R., Guesne, E., & Tiberghien, A. (1985). Children's ideas in science. Philadelphia: Open University Press.
  • Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287312.
  • Duschl, R. A., Schweingruber, H. A., & Shouse, A. W. (Eds.) (2006). Taking science to school: Learning and teaching science in grades K-8. Washington, DC: National Academy Press.
  • Erduran, S., Simon, S., & Osborne, J. (2004). TAPing into argumentation: Developments in the application of Toulmin's argument pattern for studying science discourse. Science Education, 88(6), 915933.
  • Fogleman, J., Fishman, B., & Krajcik, J. (2006). Sustaining innovations through lead teacher learning: A learning sciences perspective on supporting professional development. Teaching Education, 17(2), 181194.
  • Fogleman, J., & McNeill, K. L. (2005). Comparing teachers' adaptations of an inquiry-oriented chemistry unit. Paper presented at the annual meeting of the American Educational Research Association, Montreal, Canada.
  • Flick, L. B. (2000). Cognitive scaffolding that fosters scientific inquiry in middle level science. Journal of Science Teacher Education, 11(2), 109129.
  • Fradd, S., & Lee, O. (1999). Teachers' roles in promoting science inquiry with students from diverse language backgrounds. Educational Researcher, 18, 1420.
  • Garcia-Mila, M., & Andersen, C. (2008). Cognitive foundations of learning argumentation. In S.Erduran & M. P.Jiménez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 2945). Dordrecht, the Netherlands: Springer.
  • Gotwals, A. W., & Songer, N. B. (2006). Measuring students' scientific content and inquiry reasoning. In S.Barab, K.Hay, & D.Hickey (Eds.), Proceedings of the 7th International Conference of the Learning Sciences (pp. 196202). Mahwah, NJ: Erlbaum.
  • Gross, A. G. (1990). The rhetoric of science. Cambridge, MA: Harvard University Press.
  • Haberman, M. (1991). The pedagogy of poverty versus good teaching. Phi Delta Kappan, 73, 190294.
  • Herrenkohl, L. R., Palincsar, A. S., DeWater, L. S., & Kawasaki, K. (1999). Developing scientific communities in classrooms: A sociocognitive approach. The Journal of the Learning Sciences, 8(3 and 4), 451493.
  • Jiménez-Aleixandre, M. P., & Erduran, S. (2008). Argumentation in science education: An overview. In S.Erduran & M. P.Jimenez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 328). Dordrecht, the Netherlands: Springer.
  • Kelly, G. J., & Chen, C. (1999). The sound of music: Constructing science as a sociocultural practices through oral and written discourse. Journal of Research in Science Teaching, 36(8), 883915.
  • Kelly, G. J., Regev, J., & Prothero, W. (2008). Analysis of lines of reasoning in written argumentation. In S.Erduran & M. P.Jimenez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 137157). Dordrecht, the Netherlands: Springer.
  • Keys, C. W., & Bryan, L. A. (2001). Co-constructing inquiry-based science with teachers: Essential research for lasting reform. Journal of Research in Science Teaching, 38(6), 631645.
  • Keys, C. W., Hand, B., Prain, V., & Collins, S. (1999). Using the science writing heuristic as a tool for learning from laboratory investigations in secondary science. Journal of Research in Science Teaching, 36(10), 10651084.
  • Krajcik, J., McNeill, K. L., & Reiser, B. (2008). Learning-goals-driven design model: Curriculum materials that align with national standards and incorporate project-based pedagogy. Science Education, 92(1), 132.
  • Kuhn, D., Black, J., Keselman, A., & Kaplan, D. (2000). The development of cognitive skills to support inquiry. Cognition and Instruction, 18(4), 495523.
  • Lee, H.-S., & Songer, N. B. (2004, April). Longitudinal knowledge development: Scaffolds for inquiry. Paper presented at the annual meeting of the American Educational Research Association, San Diego, CA.
  • Lemke, J. (1990). Talking science: Language, learning, and values. Norwood, NJ: Ablex.
  • Martin, A. M., & Hand, B. (in press). Factors affecting the implementation of argument in the elementary science classroom. A longitudinal case study. Research in Science Education.
  • McNeill, K. L. (2006). Supporting students' construction of scientific explanations through curricular scaffolds and teacher instructional practices. Unpublished Doctoral Dissertation, University of Michigan, Ann Arbor.
  • McNeill, K. L., Harris, C. J., Heitzman, M., Lizotte, D. J., Sutherland, L. M., & Krajcik, J. (2004). How can I make new stuff from old stuff? In J.Krajcik & B. J.Reiser (Eds.), IQWST: Investigating and questioning our world through science and technology. Ann Arbor: University of Michigan.
  • McNeill, K. L., & Krajcik, J. (2007). Middle school students' use of appropriate and inappropriate evidence in writing scientific explanations. In M.Lovett & P.Shah (Eds.), Thinking with data (pp. 233265). New York: Taylor & Francis.
  • McNeill, K. L., & Krajcik, J. (2008). Scientific explanations: Characterizing and evaluating the effects of teachers' instructional practices on student learning. Journal of Research in Science Teaching, 45(1), 5378.
  • McNeill, K. L., Lizotte, D. J., Krajcik, J., & Marx, R. W. (2006). Supporting students' construction of scientific explanations by fading scaffolds in instructional materials. Journal of the Learning Sciences, 15(2), 153191.
  • Metz, K. E. (2000). Young children's inquiry in biology: Building the knowledge bases to empower independent inquiry. In J.Minstrell & E. H.van Zee (Eds.), Inquiry into inquiry learning and teaching in science (pp. 371404). Washington, DC: American Association for the Advancement of Science.
  • Miles, M., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook (2nd ed.). Thousand Oaks, CA: Sage.
  • Moje, E. B., Collazo, T., Carrillo, R., & Marx, R. W. (2001). “Maestro, what is quality?” Language, literacy, and discourse in project-based science. Journal of Research in Science Teaching, 38(4), 469498.
  • Myers, G. (1990). Writing biology: Texts in the social construction of scientific knowledge. Madison: University of Wisconsin Press.
  • Nagel, E. (1961). The structure of science: Problems in the logic of science education. New York: Harcourt, Brace, & World.
  • National Research Council. (1996). National Science Education Standards. Washington, DC: National Academy Press.
  • Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 9941020.
  • Pea, R. D. (2004). The social and technological dimensions of scaffolding and related theoretical concepts for learning, education, and human activity. Journal of the Learning Sciences, 13(3), 423451.
  • Puntambekar, S., Stylianou, A., & Goldstein, J. (2007). Comparing classroom enactments of an inquiry curriculum: Lessons learned from two teachers. Journal of the Learning Sciences, 16(1), 81130.
  • Quintana, C., Reiser, B., Davis, E. A., Krajcik, J., Fretz, E., Golan, R, et al. (2004). A scaffolding design framework for designing educational software. Journal of the Learning Sciences, 13(3), 337386.
  • Reiser, B. J., Tabak, I., Sandeval, W. A., Smith, B., Steinmuller, F., & Leone, A. (2001). BGuILE: Strategic and conceptual scaffolds for scientific inquiry in biology classrooms. In S. M.Carver & D.Klahr (Eds.), Cognition and instruction: Twenty-five years of progress (pp. 263305). Mahwah, NJ: Erlbaum.
  • Remillard, J. T. (2005). Examining key concepts in research on teachers' use of mathematics curricula. Review of Educational Research, 75(2), 211246.
  • Sandoval, W. A. (2003). Conceptual and epistemic aspects of students' scientific explanations. Journal of the Learning Sciences, 12(1), 551.
  • Sandoval, W. A. (2005). Understanding students' practical epistemologies and their influence on learning through inquiry. Science Education, 89(4), 634656.
  • Sandoval, W. A., & Millwood, K. A. (2005). The quality of students' use of evidence in written scientific explanations. Cognition and Instruction, 23(1), 2355.
  • Schneider, R., Krajcik, J., & Blumenfeld, P. (2005). Enacting reform-based science materials: The range of teacher enactments in reform classrooms. Journal of Research in Science Teaching, 42(3), 283312.
  • Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasi-experimental designs for generalized causal inference. Boston, MA: Houghton Mifflin.
  • Simon, S., Erduran, S., & Osborne, J. (2006). Learning to teach argumentation: Research and development in the science classroom. International Journal of Science Education, 28(2–3), 235260.
  • Stake, R. E. (2000). Case studies. In N. K.Denzin & Y. S.Lincoln (Eds.), Handbook of qualitative research Thousand Oaks, CA: Sage.
  • Tabak, I. (2004). Synergy: A complement to emerging patterns in distributed scaffolding. Journal of the Learning Sciences, 13(3), 305335.
  • Tabak, I., & Reiser, B. J. (1997). Complementary roles of software-based scaffolding and teacher–student interactions in inquiry learning. In R. Hall, N. Miyake, & N. Enyedy (Eds.), Proceedings of Computer Support for Collaborative Learning '97 (pp. 289298), Toronto, Canada.
  • Tiberghien, A. (2008). Foreword. In S.Erduran & M. P.Jimenez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp ixxv). Dordrecht, the Netherlands: Springer.
  • Toulmin, S. (1958). The uses of argument. Cambridge, England: Cambridge University Press.
  • van Eemeren, F. H., Grootendorst, R., Henkemans, F. S., Blair, J. A., Johnson, R. H., Krabbe, E. C. W., et al. (1996). Fundamentals of argumentation theory: A handbook of historical backgrounds and contemporary developments. Mahwah, NJ: Erlbaum.
  • Yore, L. D., Hand, B. M., & Prain, V. (2002). Scientists as writers. Science Education, 86(5), 672692.