SEARCH

SEARCH BY CITATION

REFERENCES

  • Allchin, D. (2006). Lawson's shoehorn—Reprise. Science & Education, 15, 113120.
  • Alters, B. J. (1997). Whose nature of science? Journal of Research in Science Teaching, 34(1), 3955.
  • Alvarez, W. (1997). T. rex and the crater of doom. Princeton, NJ: Princeton University Press.
  • American Association for the Advancement of Science. (1989). Project 2061: Science for all Americans. Washington, DC: Author.
  • American Association for the Advancement of Science. (2007). Atlas of scientific literacy (Vol. 2). Washington, DC: Author.
  • Bergman, M., & Paavola, S. (Eds.). (2003a). The Commens dictionary of Peirce's terms. Retrieved from http://www.helsinki.fi/science/commens/dictionary.html. (Reprinted from A letter to Calderoni, by C. S. Peirce, 1905)
  • Berland, K. K., & Reiser, B. J. (2009). Making sense of argumentation. Science Education, 93(1), 2655.
  • Biela, A. (1993). Psychology of analogical inference. Stuttgart, Germany: S. Hirzel Verlag.
  • Bonner, J. J. (2005). Which scientific method should we teach & when? The American Biology Teacher, 67(5), 262264.
  • Brannigan, A. (1981). The social basis of scientific discoveries. Cambridge, England: Cambridge University Press.
  • Collins, H. M. (1985). Changing order. London: Sage.
  • Cothron, J. H., Giese, R. N., & Rezba, R. J. (2006). Students and research. Dubuque, IA: Kendall/Hunt.
  • Crick, F. H. C., Barnett, F. R. S. L., Brenner, S., & Watts-Tobin, R. J. (1962). General nature of the genetic code for proteins. Nature, 192, 12271232.
  • Crouch, T. D. (1992). Why Wilber and Orville? Some thoughts on the Wright brothers and the process of invention. In R. J.Weber & D. N.Perkins (Eds.), Inventive minds (pp. 8096). New York: Oxford University Press.
  • Darwin, C. (1898). The origin of species (7th ed.). New York: Appleton & Company.
  • Diamond, J. (1997). Guns, germs, and steel. New York: Norton.
  • Educational Policies Commission. (1961). The central purpose of American education. Washington, DC: National Education Association of the United States.
  • Educational Policies Commission. (1966). Education and the spirit of science. Washington, DC: National Education Association of the United States.
  • Erduran, S., Simon, S., & Osborne, J. (2004). TAPping into argumentation: Developments in the application of Toulmin's argument pattern for studying science discourse. Science Education, 88(6), 915933.
  • Evans, J. S. (2008). Dual-processing accounts of reasoning, judgment and social cognition. Annual Review of Psychology, 59, 255278.
  • Finke, R. A., Ward, T. B., & Smith, S. M. (1992). Creative cognition: Theory research and practice. Cambridge, MA: The MIT Press.
  • Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry. American Psychologist, 34, 306326.
  • Gentner, D. (1989). The mechanisms of analogical learning. In S.Vosniadou & A.Ortony (Eds.), Similarity and analogical reasoning Cambridge, England: Cambridge University Press.
  • Giere, R. N., Bickle, J., & Mauldin, R. F. (2006). Understanding scientific reasoning (5th ed.). Belmont, CA: Thomson Higher Education.
  • Grant, P. R. (1986). Ecology and evolution of Darwin's finches. Princeton, NJ: Princeton University Press.
  • Grant, B. R., & Grant, P. R. (1989). Evolutionary dynamics of a natural population: The large cactus finch of the Galapagos. Chicago: University of Chicago Press.
  • Hanson, N. R. (1958). Patterns of discovery. London: Cambridge University Press.
  • Hempel, C. (1966). Philosophy of natural science. Upper Saddle River, NJ: Prentice-Hall.
  • Holyoak, K. J. (2005). Analogy. In K. J.Holyoak & R. G.Morrison (Eds.), The Cambridge handbook of thinking and reasoning (pp. 117142). New York: Cambridge University Press.
  • Hsu, T. (2005). Foundations of physical science investigations (2nd ed.). Peabody, MA: CPO Science.
  • Isaacson, W. (2007). Einstein: His life and universe. New York: Simon & Schuster.
  • Koestler, A. (1964). The act of creation. London: Hutchinson.
  • Lawson, A. E. (1995). Science teaching and the development of thinking, Belmont, CA: Wadsworth.
  • Lawson, A. E. (2002a). What does Galileo's discovery of Jupiter's moons tell us about the process of scientific discovery? Science & Education, 11(1), 124.
  • Lawson, A. E. (2002b). Sound and faulty arguments generated by pre-service biology teachers when testing hypotheses involving un-observable entities. Journal of Research in Science Teaching, 39(3), 237252.
  • Lawson, A. E. (2003). The nature and development of hypothetico-predictive argumentation with implications for science teaching. International Journal of Science Education, 25(11), 13871408.
  • Lawson, A. E. (2004). T. rex, the crater of doom, and the nature of scientific discovery. Science & Education, 13, 155177.
  • Lawson, A. E. (2005). What is the role of induction and deduction in reasoning and scientific inquiry? Journal of Research in Science Teaching, 42(6), 716740.
  • Lawson, A. E. (2006a). Allchin's errors and misrepresentations and the H-D nature of science. Science Education, 90(2), 289292.
  • Lawson, A. E. (2006b). Developing scientific reasoning patterns in college biology. In J. J.Mintzes & W. H.Leonard (Eds.), Handbook of college science teaching: Theory, research, and practice (pp. 109118). Washington, DC: National Science Teachers Association.
  • Lawson, A. E. (2009a). On the hypothetico-deductive nature of science—Darwin's finches. Science & Education, 18(1), 119124.
  • Lawson, A. E. (2009b). Teaching inquiry science in middle and secondary schools. Thousand Oaks, CA: Sage.
  • Lawson, A. E., Abraham, M. R., & Renner, J. W. (1989). A theory of instruction: Using the learning cycle to teach science concepts and thinking skills. Cincinnati, OH: National Association for Research in Science Teaching.
  • Lawson, A. E., Clark, B., Cramer-Meldrum, E., Falconer, K. A., Kwon, Y. J., & Sequist, J. M. (2000). The development of reasoning skills in college biology: Do two levels of general hypothesis-testing skills exist? Journal of Research in Science Teaching, 37(1), 81101.
  • Lawson, D. I., & Lawson, A. E. (1993). Neural principles of memory and a neural theory of analogical insight. Journal of Research in Science Teaching, 30(10), 13271348.
  • Mahootian, F., & Eastman, T. E. (in press). Complimentary frameworks of scientific inquiry: Hypothetico-deductive, hypothetico-inductive, and observational inductive. World Futures. The Journal of General Evolution.
  • McNeill, K. L., & Krajcik, J. (2007). Middle school students' use of appropriate and inappropriate evidence in writing scientific explanations. In M. C.Lovett & P.Shah (Eds.), Thinking with data: The proceedings of the 33rd Carnegie Symposium on Cognition (pp. 233265). Mahwah, NJ: Erlbaum.
  • Misak, C. (2004). Charles Sanders Peirce (1839–1914). In C.Misak (Ed.), The Cambridge companion to Peirce Cambridge, England: Cambridge University Press.
  • National Research Council. (1990). Fulfilling the promise: Biology education in the nation's schools. Washington DC: National Academies Press.
  • National Research Council. (1996). National Science Education Standards. Washington, DC: National Academies Press.
  • National Research Council. (2001). Educating teachers of science, mathematics, and technology. Washington, DC: National Academies Press.
  • Newton, P., Driver, R., & Osborne, J. (1999). The place of argumentation in the pedagogy of school science. International Journal of Science Education, 21, 553576.
  • Nirenberg, M. W., & Matthaei, J. H. (1961). The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proceedings of the National Academy of Sciences of the United States of America, 47(10), 15801588.
  • Oehrtman, M., & Lawson, A. E. (2008). Connecting science and mathematics: The nature of proof and disproof in science and mathematics. International Journal of Science and Mathematics Education, 6(2), 377403.
  • Planck, M. (1949). Scientific autobiography (E. Guynor, Trans.). New York: Philosophical Library.
  • Platt, J. R. (1964). Strong inference. Science, 146, 347353.
  • Polya, G. (1954). Patterns of plausible inference. Princeton, NJ: Princeton University Press.
  • Popper, K. (1965). Conjectures and refutations: The growth of scientific knowledge. New York: Basic Books.
  • Samarapungavan, A., Westby, E. L., & Bodner, G. M. (2006). Contextual epistemic development in science: A comparison of chemistry students and research chemists. Science Education, 90(3), 468495.
  • Sampson, V., & Clark, D. B. (2008). Assessment of the ways students generate arguments in science education: Current perspectives and recommendations for future directions. Science Education, 92(3), 447472.
  • Schick, T. S., Jr., & Vaughn, L. (1995). How to think about weird things. Mountain View, CA: Mayfield.
  • Shapley, H., Rapport, S., & Wright, H. (Eds.). (1954). A treasury of science. New York: Harper & Brothers. (Reprinted from The sidereal messenger, by G. Galilei, 1610)
  • Sternberg, R. J., & Davidson, J. E. (Eds.) (1995). The nature of insight. Cambridge, MA: The MIT Press.
  • Tidman, P., & Kahane, H. (2003). Logic and philosophy (9th ed.). Belmont, CA: Wadsworth/Thomson.
  • Toulmin, S. (1969). The uses of argument. Cambridge, England: Cambridge University Press.
  • Turrisi, P. A. (Ed.). (1997). Pragmatism as a principle and method of right thinking. The 1903 Harvard lectures on pragmatism. Albany: State University of New York Press. (Reprinted from C. S. Peirce, 1903; see also The Commens dictionary of Peirce's terms, by M. Bergman & S. Paavola, Eds., 2003a, 2003b. Retrieved May 18, 2009, from http://www.helsinki.fi/science/commens/dictionary.html)
  • Westerland, J., & Fairbanks, D. (2004). Gregor Mendel and “myth-conceptions.” Science Education, 88, 754758.
  • White, R. & Gunstone, R. (1992). Probing understanding. London: Falmer Press.
  • Wivagg, D., & Allchin, D. (2002). The dogma of “the” scientific method. The American Biology Teacher, 64(9), 645646.
  • Woodward, J., & Goodstein, D. (1996). Conduct, misconduct and the structure of science. American Scientist, 84, 479490.