SEARCH

SEARCH BY CITATION

REFERENCES

  • Baillargeon, R. (2008). Innate ideas revisited: For a principle of persistence in infant's physical reasoning. Perspectives on Psychological Science, 3(1), 213.
  • Bodner, G. M., & Herron, J. D. (2002). Problem-solving in chemistry. In J. K.Gilbert, O. deJong, R.Justi, D. F.Treagust, & J. H. vanDriel (Eds.), Chemical education: Towards research-based practice (pp. 235266). Dordrecht, The Netherlands: Kluwer.
  • Brown, D. (1993). Refocusing core intuitions: A concretizing role for analogy in conceptual change. Journal of Research in Science Teaching, 20(10), 12731290.
  • Charmaz, K. (2006). Constructing grounded theory: A practical guide through qualitative analysis. Thousand Oaks, CA: Sage.
  • Chi, M. T. H. (2008). Three kinds of conceptual change: Belief revision, mental model transformation, and ontological shift. In S.Vosniadou (Ed.), International handbook of research on conceptual change (pp. 6182). New York: Routledge.
  • diSessa, A. A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10, 165255.
  • Driver, R., Leach, J., Millar, R., & Scott, P. (1996). Young people's images of science. Buckingham, England: Open University Press.
  • Evans, J. S. B. T. (2006). The heuristic-analytic theory of reasoning: Extension and evaluation. Psychonomic Bulletin & Review, 13(3), 378395.
  • Evans, J. S. B. T. (2008). Dual-processing accounts of reasoning, judgment, and social cognition. Annual Review of Psychology, 59, 255278.
  • Fischbein, E. (1987). Intuition in science and mathematics: An educational approach. Dordrecht, The Netherlands: Reidel.
  • Gelman, R. (1990). First principles organize attention to and learning about relevant data: Number and the animate-inanimate distinction as examples. Cognitive Science, 14(1), 79106.
  • Gelman, R., & Williams, E. (1998). Enabling constraints for cognitive development and learning: Domain specificity and epigenesis. In D.Kuhn & R.Siegler (Eds.), Cognition, perception and language. Handbook of child psychology (5th ed., Vol. 2, pp. 575630). New York: Wiley.
  • Gigerenzer, G., & Selten, R. (2001). Bounded rationality: The adaptive toolbox. Cambridge, MA: MIT Press.
  • Gilbert, J. K., & Treagust, D. (Eds.). (2009). Multiple representations in chemical education. Dordrecht, The Netherlands: Springer.
  • Gillard, E., Van Dooren, W., Schaeken, W., & Verschaffel, L. (2009). Dual processes in the psychology of mathematics and cognitive psychology. Human Development, 52, 95108.
  • Gilovich, T., Griffin, D., & Kahneman, D. (Eds.). (2002). Heuristics and biases: The psychology of intuitive judgment. Cambridge, England: Cambridge University Press.
  • Glaser, R. (1989). Expertise and learning: How do we think about instructional processes now that we have discovered knowledge structures? In D.Klahr & K.Kotovsky (Eds.), Complex information processing: The impact of Herbert A. Simon (pp. 269282). Hillsdale, NJ: Erlbaum.
  • Goldstein, D. G., & Gigerenzer, G. (2002). Models of ecological rationality: The recognition heuristic. Psychological Review, 109(1), 7590.
  • Greene, J. C., Caracelli, V. J., & Graham, W. F. (1989). Toward a conceptual framework for mixed-method evaluation designs. Educational Evaluation and Policy Analysis, 11(3), 255274.
  • Hatano, G., & Inagaki, K. (2000). Domain-specific constraints on conceptual development. International Journal of Behavioral Development, 24(3), 267275.
  • Hawkes S. J. (2005). Introductory chemistry needs a revolution. Journal of Chemical Education, 82, 16151616.
  • Inagaki, K., & Hatano, G. (2006). Young children's conceptions of the biological world. Current Directions in Psychological Science, 15, 177181.
    Direct Link:
  • Keil, F. C. (1990). Constraints on constraints: Surveying the epigenetic landscape. Cognitive Science, 14(1), 135168.
  • Kelemen, D., & Rosset, E. (2009). The human function compunction: Teleological explanations in adults. Cognition, 111, 138143.
  • Klaczynski, P. A. (2004). A dual-process model of adolescent development: Implications for decision making, reasoning, and identity. In R. V.Kail (Ed.), Advances in child development and behavior (pp. 73123), San Diego, CA: Academic Press.
  • Leron, U., & Hazzan, O. (2006). The rationality debate: Application of cognitive psychology to mathematics education. Educational Studies in Mathematics, 62, 105126.
  • Lewis, S. E., & Lewis, J. E. (2007). Predicting at-risk students in general chemistry: Comparing formal thought to a general achievement measure. Chemistry Education Research and Practice, 81(1), 3251.
  • Newell, B. R., & Shanks, D. R. (2004). On the role of recognition in decision making. Journal of Experimental Psychology-Learning Memory and Cognition, 30(4), 923935.
  • Osman, M., & Stavy, R. (2006). Development of intuitive rules: Evaluating the application of the dual system framework in understanding children's intuitive reasoning, Psychonomic Bulletin & Review, 13(6), 935953.
  • Pozo, J. I., & Gómez Crespo, M. A. (1998). Aprender y enseñar ciencia [Teaching and learning science]. Madrid, Spain: Morata.
  • Redish, E. F. (2004). A theoretical framework for physics education research: Modeling student thinking. In E. F.Redish & M.Vicentini (Eds.), Proceedings of the International School of Physics, “Enrico Fermi” course CLVI. Amsterdam: IOS Press.
  • Roberts, M. J. (2004). Heuristics and reasoning I: Making deduction simple. In J. P.Leighton & R. J.Stenberg (Eds.), The nature of reasoning. Cambridge, England: Cambridge University Press.
  • Rosset, E. (2008). It's no accident: Our bias for intentional explanations. Cognition, 108, 771780.
  • Sebastià, J. M. (1989). Cognitive constraints and spontaneous interpretations in physics. International Journal of Science Education, 11(4), 363369.
  • Shah, A. K., & Oppenheimer, D. M. (2008). Heuristics made easy: An effort-reduction framework. Psychological Bulletin, 134(2), 207222.
  • Siegler, R. S., & Crowley, K. (1994). Constraints on learning in non-privileged domains. Cognitive Psychology, 27, 194226.
  • Sloman, S. A. (1996). The empirical case for two systems of reasoning. Psychological Bulletin, 119(1), 322.
  • Stains, M., & Talanquer, V. (2007). Classification of chemical substances using particulate representations of matter: An analysis of student thinking. International Journal of Science Education, 29(5), 643661.
  • Stavy, R., & Tirosh, D. (2000). How students (mis-)understand science and mathematics: Intuitive rules. New York: Teachers College Press.
  • Taber, K. S. (1998). An alternative conceptual framework from chemistry education. International Journal of Science Education, 20(5), 597608.
  • Taber, K. S. (2003). Understanding ionisation energy: Physical, chemical and alternative conceptions. Chemistry Education: Research and Practice, 4(2), 149169.
  • Taber, K. S. (2008). Conceptual resources for learning science: Issues of transience and grain-size in cognition and cognitive structure. International Journal of Science Education, 30, 10271053.
  • Taber, K. S. (2009). College students' conceptions of chemical stability: The widespread adoption of a heuristic rule out of context and beyond its range of application. International Journal of Science Education, 31, 13331358.
  • Taber, K. S., & Bricheno, P. A. (2009). Coordinating procedural and conceptual knowledge to make sense of word equations: Understanding the complexity of a “simple” completion task at the learner's resolution. International Journal of Science Education, 31, 20212055.
  • Taber, K. S., & Tan, K.-C. D. (2007). Exploring learners' conceptual resources: Singapore A level students' explanations in the topic of ionisation energy. International Journal of Science and Mathematics Education, 5, 375392.
  • Tai, R. H., Sadler, P. M., & Loehr, J. F. (2005). Factors influencing success in introductory college chemistry. Journal of Research in Science Teaching, 42, 9871012.
  • Talanquer, V. (2006). Common sense chemistry: A model for understanding students' alternative conceptions. Journal of Chemical Education, 83(5), 811816.
  • Talanquer, V. (2008). Students' predictions about the sensory properties of chemical compounds: Additive versus emergent frameworks. Science Education. 92(1), 96114.
  • Talanquer, V. (2009). On cognitive constraints and learning progressions: The case of structure of matter. International Journal of Science Education, 31(15), 21232136.
  • Tanaka, J. W., & Taylor, M. (1991). Object categories and expertise—Is the basic level in the eye of the beholder. Cognitive Psychology, 23(3), 457482.
  • Todd, P. M., & Gigerenzer, G. (2000). Precis of simple heuristics that make us smart. Behavioral and Brain Sciences, 23, 727780.
  • Viennot, L. (2001). Reasoning in physics: The part of common sense. Dordrecht, The Netherlands: Kluwer.
  • Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and Instruction, 4, 4569.
  • Vosniadou, S. (2007). The conceptual change approach and its re-framing. In S.Vosniadou, A.Baltas, & X.Vamvakoussi (Eds.), Re-framing the conceptual change approach in learning and instruction (pp. 115). Amsterdam: Earli/Elsevier.
  • Wellman, H. M., & Gelman, S. (1998). Knowledge acquisition in foundational domains. In D.Kuhn & R.Siegler (Eds.), Cognition, perception and language. Handbook of child psychology (5th ed, Vol. 2, pp. 523573). New York: Wiley.
  • White, R., & Gunstone, R. (1992). Probing understanding. London: The Falmer Press.