SEARCH

SEARCH BY CITATION

REFERENCES

  • Alexander, G., Sweeting, R., & McKeown, B. (1994). The shift in visual pigment dominance in the retinae of juvenile coho salmon (Oncorhynchus kisutch): An indicator of smolt status. Journal of Experimental Biology, 195, 185197.
  • Asher, I., Nasser, S., Ganaim, L., & Tabak, I. (2010). Putting the pieces together: The challenge and value of synthesizing disparate graphs in inquiry-based science learning. In K. Gomez, L. Lyonos, & J. Radinsky (Eds.), ICLS '10: Proceedings of the 9th International Conference of the Learning Sciences (Vol. 2, pp. 340341). Chicago: ISLS.
  • Bakker, A., Kent, P., Derry, J., Noss, R., & Hoyles, C. (2008). Statistical inference at work: Statistical process control as an example. Statistical Education Research Journal, 7, 130145.
  • Cobb, P., & Tzou, C. (2009). Supporting students' learning about data generation. In W.-M. Roth (Ed.), Mathematical representation at the interface of body and culture (pp. 135170). Charlotte, NC: Information Age.
  • Coy, M. (1989). Being what we pretend to be: The usefulness of apprenticeship as a field method. In M. W. Coy (Ed.), Apprenticeship: From theory to method and back again (pp. 115135). Albany: State University of New York Press.
  • Dierdorp, A., Bakker, A., Eijkelhof, H., & van Maanen, J. (2011). Authentic practices as contexts for learning to draw inferences beyond correlated data. Mathematical Thinking and Learning, 13, 132151.
  • Eco, U. (1984). Semiotics and the philosophy of language. Bloomington: Indiana University Press.
  • Edgerton, S. (1985). The renaissance development of the scientific illustration. In J. Shirley & D. Hoeniger (Eds.), Science and the arts in the renaissance (pp. 168197). Washington, DC: Folger Shakespeare Library.
  • Gainsburg, J. (2006). The mathematical modeling of structural engineers. Mathematical Thinking and Learning, 8, 336.
  • Garfinkel, H. (1967). Studies in ethnomethodology. Englewood Cliffs, NJ: Prentice-Hall.
  • Garfinkel, H., & Sacks, H. (1986). On formal structures of practical action. In H. Garfinkel (Ed.), Ethnomethodological studies of work (pp. 160193). London: Routledge & Kegan Paul.
  • Hanson, N. R. (1958). Patterns of discovery: An inquiry into the conceptual foundations of science. Cambridge, England: Cambridge University Press.
  • Heidegger, M. (1927/1977). Sein und Zeit [Being and time]. Tübingen, Germany: Max Niemeyer. (Original work published)
  • Hempel, C. G., & Oppenheim, P. (1948). Studies in the logic of explanation. Philosophy of Science, 15, 135175.
  • Il'enkov, E. (1982). Dialectics of the abstract and the concrete in Marx's Capital (S. Kuzyakov, Transl.). Moscow, Russia: Progress.
  • Izsâk, A. (2000). Inscribing the winch: Mechanisms by which students develop knowledge structures for representing the physical world with algebra. Journal of the Learning Science, 9, 3174.
  • Kant, I. (1956). Werke I: Vorkritische Schriften bus 1768 [Works I: Pre-critical writings until 1768]. Wiesbaden, Germany: Insel. (Original work published 1763)
  • Kuhn, T. S. (1970). The structure of scientific revolutions (2nd ed.). Chicago: University of Chicago Press.
  • Latour, B. (1987). Science in action: How to follow scientists and engineers through society. Cambridge, MA: Harvard University Press.
  • Latour, B. (1993). La clef de Berlin et autres leçons d'un amateur de sciences [The key to Berlin and other lessons of a science lover]. Paris: La Découverte.
  • Leinhardt, G., Zaslavsky, O., & Stein, M. K. (1990). Functions, graphs, and graphing: Tasks, learning, and teaching. Review of Educational Research, 60, 164.
  • Munz, F. W., & Beatty, D. D. (1965). A critical analysis of the visual pigments of salmon and trout. Vision Research, 5, 117.
  • National Council for Teaching of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Author.
  • National Research Council. (1996). National Science Education Standards. Washington, DC: National Academy Press.
  • Nickerson, R. S. (1998). Confirmation bias: A ubiquitous phenomenon in many guises. Review of General Psychology, 2, 175220.
  • Ochs, E., Gonzales, P., & Jacoby, S. (1996). “When I come down I'm in the domain state”: Grammar and graphic representation in the interpretive activity of physicists. In E. Ochs, E. A. Schegloff, & S. A. Thompson (Eds.), Interaction and grammar (pp. 328369). Cambridge, England: Cambridge University Press.
  • Organization for Economic Cooperation and Development. (2006). PISA released items. Accessed February 18, 2012, from http://www.oecd.org/dataoecd/13/33/38709385.pdf.
  • Pfannkuch, M. (2011). The role of context in developing informal statistical inferential reasoning: A classroom study. Mathematical Thinking and Learning, 13, 2746.
  • Picone, C., Rhode, J., Hyatt, L., & Parshall, T. (2007). Assessing gains in undergraduate students' abilities to analyze graphical data. Teaching Issues and Experiments in Ecology, 5. Accessed February 5, 2012, from http:http:////tiee.ecoed.net/vol/v5/research/picone/pdf/Picone_etal2007.pdf
  • Preece, J., & Janvier, C. (1992). A study of the interpretation of trends in multiple curve graphs of ecological situations. School Science and Mathematics, 92, 299306.
  • Proust, M. (1913/1946–47). À la recherche du temps perdu: Du coté de chez Swan [In search of lost time: Swann's way]. Paris: Gallimard. (Original work published)
  • Ricœur, P. (1986). Du texte à l'action: Essais d'herméneutique II [From text to action: Essays in hermeneutics, II]. Paris: Éditions du Seuil.
  • Roth, W.-M. (1996). Where is the context in contextual word problems?: Mathematical practices and products in Grade 8 students' answers to story problems. Cognition and Instruction, 14, 487527.
  • Roth, W.-M. (2004). What is the meaning of meaning? A case study from graphing. Journal of Mathematical Behavior, 23, 7592.
  • Roth, W.-M. (2005). Making classifications (at) work: Ordering practices in science. Social Studies of Science, 35, 581621.
  • Roth, W.-M (2009). Limits to general expertise: A study of in- and out-of-field graph interpretation. In S. P. Weingarten & H. O. Penat (Eds.), Cognitive psychology research developments (pp. 138). Hauppauge, NY: Nova Science.
  • Roth, W.-M., & Bowen, G. M. (1999a). Complexities of graphical representations during lectures: A phenomenological approach. Learning and Instruction, 9, 235255.
  • Roth, W.-M., & Bowen, G. M. (1999b). Digitizing lizards or the topology of vision in ecological fieldwork. Social Studies of Science, 29, 719764.
  • Roth, W.-M., & Bowen, G. M. (2001). Professionals read graphs: A semiotic analysis. Journal for Research in Mathematics Education, 32, 159194.
  • Roth, W.-M., & Bowen, G. M. (2003). When are graphs ten thousand words worth? An expert/expert study. Cognition and Instruction, 21, 429473.
  • Sacks, H., Schegloff, E., & Jefferson, G. (1974). A simplest systematics for the organization of turn-taking in conversation. Language, 50, 697735.
  • Selting, M., Auer, P., Barden, B., Bergmann, J., Couper-Kuhlen, E., Günthner, S., et al. (1998). Gesprächsanalytisches Transkriptionssystem [Conversation analytic transcription system]. Linguistische Berichte, 173, 91122.
  • Tabachneck-Schijf, H. J. M., Leonardo, A. M., & Simon, H. A. (1997). CaMeRa: A computational model for multiple representations. Cognitive Science, 21, 305350.
  • Triantafillou, C., & Potatri, D. (2010). Mathematical practices in a technological workplace. Educational Studies in Mathematics, 74, 275294.
  • Vygotskij, L. S. (2005). Psychologija razvitija cheloveka [Pyschology of human development]. Moscow, Russia: Eksmo.