SEARCH

SEARCH BY CITATION

References

  • 1
    Adetunmbi AO, Zhiwei S, Zhongzhi S, Adewale OS. Network anomalous intrusion detection using fuzzy-Bayes. In IFIP International federation for information processing, 3rd edn, Vol. 228. Intelligent Information Processing, Shi Z, Shi-mohara K, Feng D (eds). Springer: Berlin, 2006; 525530.
  • 2
    Ho (George) SY. Intrusion detection-systems for today and tomorrow. SANS institute, 2001. Accessed online on: April 10, 2010. Available at: http://www.sans.org/reading_room/whitepapers/detection/intrusion-detection-systems-today-tomorrow_341
  • 3
    Byunghae-cha KP, Jaittyun S. Neural network techniques for host anomaly intrusion detection using fixed pattern transformation. In ICCSA 2005, Lecture Notes in Computer Science, Vol. 3481, 2005; 254263.
  • 4
    Biswanath M, Todd LH, Karl NL. Network intrusion detection. IEEE Network 1994; 8(3): 2641.
  • 5
    Xu X, Wang XN. Adaptive network intrusion detection method based on PCA and SVM. In BNAI (ADMA-2005). Lecture Notes in Artificial Intelligence, Vol. 3584, 2005; 696703.
  • 6
    Shon T, Soe J, Moon J. SVM approach with a genetic algorithm for network intrusion detection. In Proceedings of 20th International Symposium on Computer and Information Sciences (ISCIS-2005). Springer: Berlin, 2005; 224233.
  • 7
    Ghosh KA, Schwartzbard A. Study in using neural networks for anomaly and misuse detection. In Proceedings of the 8th USENIX Security Symposium, Washington DC, August 1999; 131142.
  • 8
  • 9
    McHugh J. Testing intrusion detection systems: a critique of the 1998 and 1999 DARPA intrusion detection system evaluation as performed by Lincoln laboratory. ACM Transaction on Information and System Security 2000; 3(4): 262294.
  • 10
    Tavallaee M, Bagheri E, Lu W, Ghorbani AA. A detailed analysis of KDDCup 99 dataset. In Proceedings of 2009 IEEE Symposium on Computational Intelligence in Security and Defence Applications (CISDA-2009), IEEE Press: USA, 2009.
  • 11
    Fisch D, Hofmann A, Sick B. On the versatility of radial basis function neural networks: a case study in the field of intrusion detection. Information Sciences 2010; 180: 241212439.
  • 12
    Zanial A, Maarof MA, Shamsuddin SM. Ensemble classifiers for network intrusion detection system. Journal of Information Assurance and Security 2009; 4: 217225.
  • 13
    Mukkamala S, Sung AH, Abraham A. Intrusion detection using an ensemble of intelligent paradigms. Journal of Network and Computer Applications 2005; 28: 167182.
  • 14
    Panda M, Patra MR. A semi-naïve Bayesian approach for network intrusion detection system. Lecture Notes in Computer Science, Vol. 5863, Springer: Berlin, 2009; 614621.
  • 15
    Panda M, Patra MR. A hybrid clustering approach for network intrusion detection using COBWEB and FFT. Journal of Intelligent Systems 2009; 18(3): 229245.
  • 16
    Tran TP, Cao L, Tran D, Nguyen CD. Novel intrusion detection using probabilistic neural network and adaptive boosting. International Journal of Computer Science and Information Security 2009; 6(1): 8391.
  • 17
    Farid D, Harbi M, Rahman MZ. Combining naïve Bayes and decision trees for adaptive intrusion detection. International Journal of Network Security and its Applications 2010; 2(2): 1224.
  • 18
    Panda M, Patra MR. Ensembling rule based classifiers for detecting network intrusions. In Proceedings of International Conference on Advances in Recent Technologies in Communication and Computing ARTCom-2009. IEEE Press: USA, 2009; 1922.
  • 19
    Powers ST, He J. A hybrid artificial immune system and self organising map for network intrusion detection. Information Sciences 2008; 178: 30243042.
  • 20
    Shon T, Moon J. A hybrid machine learning approach to network anomaly detection. Information Sciences 2007; 177: 37993821.
  • 21
    Mahoney M, Chan P. An analysis of the 1999 DARPA/Lincoln laboratory evaluation data for network anomaly detection. LNCS, 2003; 220238.
  • 22
    Khirsagar VP, Patil DR. Applications of variant of AdaBoost based machine learning algorithm in network intrusion detection. International Journal of Computer Science and Security 2010; 4(2): 16.
  • 23
    Kou G, Peng Y, Chen Z, Shi Y. Multiple criteria mathematical programming for multiclass classification and application in network intrusion detection. Information Sciences 2009; 179:371381.
  • 24
    STEAL (Security Technology Education and Analysis Laboratory), Nebraska University Consortium on Information Assurance (NUCIA), 2005. Available at: http://nucia.ist.unomaha.edu/steal/labs.php
  • 25
    Stofo SJ, Fan W, Lee W, Prodromidis A, Chan PK. Cost based modelling and evaluation for data mining with application to fraud and intrusion detection, JAM project, 1999; 139.
  • 26
    Witten IH, Frank E. Data Mining: Practical Machine Learning Tools and Techniques (2nd edn). Morgan Kaufmann, Elsevier: US, 2005.
  • 27
    Hackermann D. A tutorial on learning with Bayesian networks, Microsoft research. Technical Report, MSR-TR-95-06, 1995.
  • 28
    Kragel C, Toth T, Kirda E. Service specific anomaly detection for network intrusion detection. In ACM Symposium on Applied Computing. ACM Press: Madrid, Spain, 2002; 201208.
  • 29
    Valdes A, Skinner K. Adaptive model based monitoring for cyber attack detection. In Recent Advances in Intrusion Detection, LNCS, Vol. 1907, Springer Verlag: Berlin, 2000; 8092.
  • 30
    Ye N, Xu M, Emran SM. Probabilistic networks with undirected links for anomaly detection. In IEEE Systems, Man and Cybernatics Information Assurance and Security Workshop, West Point, NY, 2000.
  • 31
    Panda M, Patra MR. Mining knowledge from network intrusion data using data mining techniques. In Knowledge Mining using Intelligent Agents, Dehuri SN, Chao S-B (eds). Chapter. 6, Imperial College Press: London, 2010; 161200.
  • 32
    Salzberg S. A nearest hyperrectangle learning method. Machine Learning 6: 277309.
  • 33
    Roy S. Nearest neighbour with generalization. University of Canterbury: Christchurch, NZ, 2002.
  • 34
    Cohen WW. Fast effective rule induction. In 12th International Conference on Machine Learning. 1995; 115123.
  • 35
    Willium A. Clustering algorithm for categorical data, 2006.
  • 36
    Weka: Waikato environment for knowledge analysis, version 3.7.1. Available at: http://www.cs.waikato.ac.nz/ml/weka/, February 20, 2010.