• 1
    Shannon CE. Communication theory of secrecy systems. Bell Syst. Tech. J. 1949; 28: pp. 656715.
  • 2
    Wyner AD. The wire-tap channel. Bell Syst. Tech. J. 1975; 54: pp. 13551387.
  • 3
    Csiszar I. and Korner J.. Broadcast channels with confidential messages. IEEE Trans. Inf. Theory, IT 1978; vol. 24, no. 3, pp. 339348.
  • 4
    Leung-Yan-Cheong S. K. and Hellman M. E.. The Gaussian wiretap channel. IEEE Trans. Inf. Theory IT 1978; vol. 24, no. 4, pp. 451456.
  • 5
    Li Z., Yates R., Trappe W.. Secrecy capacity of independent parallel channels, Proceedings of the 44th Annual Allerton Conference on Communication, Control, and Computing, Sept. 2006.
  • 6
    Liang Y., Poor H. V., and Shamai S.. Secure communication over fading channels. IEEE Trans. Inf. Theory 2008, vol. 54, no. 6, pp. 24702492.
  • 7
    Gopala P. K., Lai L., and Gamal H. E.. On the secrecy capacity of fading channels. IEEE Trans. Inf. Theory 2008; vol. 54, no. 10, pp. 46874698.
  • 8
    Bloch M., Barros J., Rodrigues M.R.D., and McLaughlin S. W.. Wireless information-theoretic security. IEEE Trans. Inf. Theory 2008; vol. 54, no. 6, pp. 25152534.
  • 9
    Simon MK, Alouini M-S. Digital Communication over Fading Channels (2nd edn). Wiley-Interscience, 2005.
  • 10
    Jeon H., Kim N., Choi J., Lee H., and Ha J.. Bounds on secrecy capacity over correlated ergodic fading channels at high SNR. IEEE Trans. Inf. Theory Apr. 2011; vol. 57, no. 4, pp. 19751983.
  • 11
    Zhu J., Takahashi O., Jiang X., Nakamura Y., and Shiraishi Y.. Outage secrecy capacity over correlated fading channels at high SNR, in Proc. of the Sixth International Conference on Mobile Computing and Ubiquitous Networking, May 2012, Okinawa, Japan, pp. 9297.
  • 12
    Sun X., Wang J., Xu W., and Zhao C.. Performance of secure communications over correlated fading channels. IEEE Signal Processing Letters, Aug. 2012; vol.19, no.8, pp.479482.
  • 13
    Renzo M., Imbriglio L., Graziosi F., and Santucci F.. Distributed data fusion over correlated log-normal sensing and reporting channels: application to cognitive radio networks. IEEE Trans. Wireless Communications, 2009; vol. 8, no. 12, pp. 58135821.
  • 14
    Heliot F., Chu X., Hoshyar R., and Tafazolli R.. A tight closed-form approximation of the log-normal fading channel capacity. IEEE Trans. on Wireless Communications, 2009; vol. 8, no. 6, pp. 28422847.
  • 15
    Zhu X. and Kahn J.M.. Performance bounds for coded free-space optical communications through atmospheric turbulence channels. IEEE Transactions on Communications, 2003; vol. 51, no. 8, pp. 12331239.
  • 16
    Haas S.M. and Shapiro J.H.. Capacity of wireless optical communications. IEEE Journal on Selected Areas in Communications, 2003; vol. 21, no. 8, pp. 13461357.
  • 17
    Andrews LC, Phillips RL. Laser Beam Propagation through Random Media. SPIE Press, 2005.
  • 18
    Middleton D. An Introduction to Statistical Communication Theory. McGraw-Hill, 1960.
  • 19
    Karp S., Gagliardi R. M., Moran S. E., and Stotts L. B. (Eds.). Optical Channels: Fibers, Clouds, Water and the Atmosphere, Springer, 1988.
  • 20
    Goodman JW. Statistical Optics. John Wiley & Sons, 1985.
  • 21
    MRV Communications Inc. Data Security in Free Space Optics,
  • 22
    Farid A. A. and Hranilovic S.. Outage capacity optimization for free-space optical links with pointing errors. Journal of Lightwave Technology, 2007; vol. 25, no. 7, pp. 17021710.
  • 23
    Wilson S. G., Brandt-Pearce M., Cao Q., and Leveque III J. J. H.. Free-space optical MIMO transmission with Q-ary PPM. IEEE Transactions on Communications, 2005; vol. 53, no. 8, pp.14021412.