SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Benelux JC. Secret sharing homomorphisms: keeping shares of a secret secret. Advances in Cryptology - Crypto '86, LNCS 263, Springer-Verlag: 1987; 251260.
  • 2
    Blakley GR. Safeguarding cryptographic keys. Proceedings of AFIPS'79 Nat. Computer Conf. 1979; 48: 313317, AFIPS Press.
  • 3
    Chor B, Goldwasser S, Micali S, Awerbuch B. Verifiable secret sharing and achieving simultaneously in the presence of faults. Proceedings of 26th IEEE Symp. on Foundations of Computer Science 1985; 383395.
  • 4
    Chien HY, Jan JK, Tseng YM. A practical (t, n) multi-secret sharing scheme. IEICE Transactions on Fundamentals -A 2000; (12): 27622765.
  • 5
    Feldman P. A practical scheme for non-interactive verifiable secret sharing. Proceedings of 28th IEEE Symp. on Foundations of Computer Science 1978; 427437.
  • 6
    Harn L. Efficient sharing (broadcasting) of multiple secrets. IEE Computers and Digital Techniques 1995; 142(3): 237240.
  • 7
    Harn L. Comment multistage secret sharing based on one-way function. Electronic letters 1995; 31(4):262.
  • 8
    He J0, Dawson E. Multistage secret sharing based on one-way function. Electronic letters 1994; 30(19): 15911592.
  • 9
    He J, Dawson E. Multi-secret sharing scheme based on one-way function. Electronic letters 1995; 31(2): 9394.
  • 10
    Harn L, Lin C. Strong (n, t, n) verifiable secret sharing scheme. Information Sciences 2010; 180(16): 30593064.
  • 11
    Katz J, Koo C, Kumaresan R. Improved the round complexity of VSS in point-to-point networks. ICALP 2008, Part II, LNCS 5126, Springer-Verlag: 2008; 499510
  • 12
    Lin HY, Yeh YS. Dynamic multi-secret sharing scheme. International Journal Contemporary Mathematics Sciences 2008; 3(1): 3742.
  • 13
    Lin TY, Wu TC. (t, n) threshold verifiable multisecret sharing scheme based on factorisation intractability and discrete logarithm modulo a composite problems. IEE Proceedings-Computers & Digital Techniques 1999; 146(5): 264268.
  • 14
    Pedersen TP. Non-interactive and information-theoretic secure verifiable secret sharing. Advances in Cryptology - Crypto '91, LNCS 576, Springer-Verlag: 1992; 129140.
  • 15
    Shao J, Cao Z. A new efficient (t, n) verifiable multi-secret sharing (VMSS) based on YCH scheme. Applied Mathematics and Computation 2005; 168(1): 135140.
  • 16
    Shamir A. How to share a secret. Communications of the ACM 1979; 22(11): 612613.
  • 17
    Tang C, Yao Z.-A. A new (t, n) -threshold secret sharing scheme. Proceedings of 2008 International Conference on Advanced Computer Theory and Engineering - ICACTE'08, 2008; 920924.
  • 18
    Tompa M, Woll H. How to share a secret with cheaters. Journal of Cryptology 1989; 1(3): 133138.
  • 19
    Yang CC, Chang TY, Hwang MS. A (t, n) multi secret sharing scheme. Applied Mathematics and Computation 2004; 151: 483490.
  • 20
    Zhang X, Zhang L, Zhang Q, Tang C. A secret sharing shuffling scheme based on polynomial. Proceedings of 2008 IEEE International Conference on Information and Automation 2008; 17461750.