Mitigation of peer-to-peer overlay attacks in the automatic metering infrastructure of smart grids

Authors

  • Cristina Rottondi,

    Corresponding author
    1. Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, Italy
    • Correspondence: Cristina Rottondi, Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, Italy.

      E-mail: rottondi@elet.polimi.it

    Search for more papers by this author
  • Marco Savi,

    1. Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, Italy
    Search for more papers by this author
  • Giacomo Verticale,

    1. Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, Italy
    Search for more papers by this author
  • Christoph Krauß

    1. Fraunhofer Research Institution for Applied and Integrated Security, Parkring 4, Garching b. Muenchen, Germany
    Search for more papers by this author

  • A preliminary version appeared in C. Rottondi, M. Savi, D. Polenghi, G. Verticale and C. Krauß, ‘Implementation of a Protocol for Secure Distributed Aggregation of Smart Metering Data’, IEEE SG-TEP, 1st International Conference on Smart Grid Technologies, Economics and Policies, Nuremberg, Germany, December 2012.

Abstract

Measurements gathered by smart metres and collected through the automatic metering infrastructure of smart grids can be accessed by numerous external subjects for different purposes, ranging from billing to grid monitoring. Therefore, to prevent the disclosure of personal information through the analysis of energy consumption patterns, the metering data must be securely handled. Peer-to-peer networking is a promising approach for interconnecting communication nodes among the automatic metering infrastructure to efficiently perform data collection while ensuring privacy and confidentiality, but it is also prone to various security attacks. This paper discusses the impact of the most relevant peer-to-peer attack scenarios on the performance of a protocol for privacy preserving aggregation of metering data. The protocol relies on communication gateways located in the customers’ households and interconnected by means of a variant of the Chord overlay. We also propose some countermeasures to mitigate the effects of such attacks: we integrate a verifiable secret sharing scheme based on Pedersen commitments in the aggregation protocol, which ensures data integrity, with compliance checks aimed at identifying the injection of altered measurements. Moreover, we introduce Chord auxiliary routing tables to counteract the routing pollution performed by dishonest nodes. The paper evaluates the computational complexity and effectiveness of the proposed solutions through analytical and numerical results. Copyright © 2014 John Wiley & Sons, Ltd.

Ancillary