Sputtering of a coarse-grained benzene and Ag(111) crystals by large Ar clusters – effect of impact angle and cohesive energy


Zbigniew Postawa, Institute of Physics, Jagiellonian University, Reymonta 4, Kraków, Poland.

E-mail: zbigniew.postawa@uj.edu.pl


Molecular dynamics computer simulations are employed to investigate the role of the substrate cohesive energy on the impact angle dependence of the sputtering yield for Ar60 and Ar2953 projectiles bombarding a benzene molecular solid and a Ag(111) atomistic sample. A different dependence of the total sputtering yield on the impact angle is observed for small and large projectiles for benzene, while a similar dependence is observed for Ag(111). It is demonstrated that the increase of the cohesive energy leads to a significant decrease of the total ejection signal for both Ar60 and Ar2953 projectiles. The shape of the impact angle dependence, however, is much less sensitive to this parameter. The ‘washing out’ mechanism and the structural differences of the irradiated samples are proposed to be responsible for the different shapes of the impact angle dependence. Copyright © 2012 John Wiley & Sons, Ltd.