SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    Seoyoung C. Kim, Sebastian Schneeweiss, Niteesh Choudhry, Jun Liu, Robert J. Glynn, Daniel H. Solomon, Effects of xanthine oxidase inhibitors on cardiovascular disease in patients with gout: a cohort study, The American Journal of Medicine, 2015,

    CrossRef

  2. 2
    R. Pirracchio, M. L. Petersen, M. van der Laan, Improving Propensity Score Estimators' Robustness to Model Misspecification Using Super Learner, American Journal of Epidemiology, 2015, 181, 2, 108

    CrossRef

  3. 3
    Dietrich Rothenbacher, Gorana Capkun, Hatice Uenal, Hayrettin Tumani, Yvonne Geisbühler, Hugh Tilson, New opportunities of real world data from clinical routine settings in life cycle-management of drugs: example of an integrative approach in multiple sclerosis, Current Medical Research & Opinion, 2015, 1

    CrossRef

  4. 4
    Xiaoqin Wang, Li Yin, Point and interval estimation of baseline risk and treatment effect based on logistic model for observational studies, Biometrical Journal, 2015, 57, 2
  5. 5
    Lobna Ouldamer, Agnès Caille, Bruno Giraudeau, Gilles Body, Quilting Suture of Mastectomy Dead Space Compared with Conventional Closure with Drain, Annals of Surgical Oncology, 2015,

    CrossRef

  6. 6
    Jennifer Hill, Elizabeth A. Stuart, International Encyclopedia of the Social & Behavioral Sciences, 2015,

    CrossRef

  7. 7
    Bijan J Borah, James P Moriarty, William H Crown, Jalpa A Doshi, Applications of propensity score methods in observational comparative effectiveness and safety research: where have we come and where should we go?, Journal of Comparative Effectiveness Research, 2014, 3, 1, 63

    CrossRef

  8. 8
    Clarisse Eveno, Guillaume Passot, Diane Goéré, Philippe Soyer, Etienne Gayat, Olivier Glehen, Dominique Elias, Marc Pocard, Bevacizumab Doubles the Early Postoperative Complication Rate after Cytoreductive Surgery with Hyperthermic Intraperitoneal Chemotherapy (HIPEC) for Peritoneal Carcinomatosis of Colorectal Origin, Annals of Surgical Oncology, 2014, 21, 6, 1792

    CrossRef

  9. 9
    Seoyoung C. Kim, Robert J. Glynn, Jun Liu, Brendan M. Everett, Allison B. Goldfine, Dipeptidyl peptidase-4 inhibitors do not increase the risk of cardiovascular events in type 2 diabetes: a cohort study, Acta Diabetologica, 2014, 51, 6, 1015

    CrossRef

  10. 10
    E. Sarlon, A. Millier, S. Aballéa, M. Toumi, Evaluation of Different Approaches for Confounding in Nonrandomised Observational Data: A Case-Study of Antipsychotics Treatment, Community Mental Health Journal, 2014, 50, 6, 711

    CrossRef

  11. 11
    Ya-Chen Tina Shih, Ying Xu, Wenli Dong, Fabrice Smieliauskas, Sharon Giordano, Yu Shen, First do no harm: population-based study shows non-evidence-based trastuzumab prescription may harm elderly women with breast cancer, Breast Cancer Research and Treatment, 2014, 144, 2, 417

    CrossRef

  12. 12
    Christian R. Salazar, Richard V. Smith, Madhur K. Garg, Missak Haigentz, Bradley A. Schiff, Nicole Kawachi, Nicole Anayannis, Thomas J. Belbin, Michael B. Prystowsky, Robert D. Burk, Nicolas F. Schlecht, Human Papillomavirus-Associated Head and Neck Squamous Cell Carcinoma Survival: A Comparison by Tumor Site and Initial Treatment, Head and Neck Pathology, 2014, 8, 1, 77

    CrossRef

  13. 13
    M. Fernandez-Ruiz, J. M. Aguado, B. Almirante, D. Lora-Pablos, B. Padilla, M. Puig-Asensio, M. Montejo, J. Garcia-Rodriguez, J. Peman, M. Ruiz Perez de Pipaon, M. Cuenca-Estrella, B. Padilla, P. Munoz, J. Guinea, J. R. Pano Pardo, J. Garcia-Rodriguez, C. G. Cerrada, J. Fortun, P. Martin, E. Gomez, P. Ryan, C. Campelo, I. de los Santos Gil, V. Buendia, B. P. Gorricho, M. Alonso, F. S. Sanz, J. M. Aguado, P. Merino, F. G. Romo, M. Gorgolas, I. Gadea, J. E. Losa, A. Delgado-Iribarren, A. Ramos, Y. Romero, I. S. Romero, O. Zaragoza, M. Cuenca-Estrella, J. Rodriguez-Bano, A. I. Suarez, A. Loza, A. I. Aller Garcia, E. Martin-Mazuelos, M. R. P. de Pipaon, J. Garnacho, C. Ortiz, M. Chavez, F. L. Maroto, M. Salavert, J. Peman, J. Blanquer, D. Navarro, J. J. Camarena, R. Zaragoza, V. Abril, C. Gimeno, S. Hernaez, G. Ezpeleta, E. Bereciartua, J. L. Hernandez Almaraz, M. Montejo, R. A. Rivas, R. Ayarza, A. Ma Planes, I. Ruiz Camps, B. Almirante, J. Mensa, M. Almela, M. Gurgui, F. Sanchez-Reus, J. Martinez-Montauti, M. Sierra, J. P. Horcajada, L. Sorli, J. Gomez, A. Gene, M. Urrea, M. Valerio, A. Diaz-Martin, F. Puchades, A. Mularoni, Initial Use of Echinocandins Does Not Negatively Influence Outcome in Candida parapsilosis Bloodstream Infection: A Propensity Score Analysis, Clinical Infectious Diseases, 2014, 58, 10, 1413

    CrossRef

  14. 14
    Henian Chen, Nanhua Zhang, Xiaosun Lu, Is Early Smoking A Causal Risk Factor for Later Cognitive Impairment? A 20-Year Prospective Study with Time-Varying Propensity Score Matching Based on Random Intercept and Slope, Communications in Statistics - Simulation and Computation, 2014, 00

    CrossRef

  15. 15
    M. Sanni Ali, Rolf H. H. Groenwold, Wiebe R. Pestman, Svetlana V. Belitser, Kit C. B. Roes, Arno W. Hoes, Anthonius Boer, Olaf H. Klungel, Propensity score balance measures in pharmacoepidemiology: a simulation study, Pharmacoepidemiology and Drug Safety, 2014, 23, 8
  16. 16
    M. Sanni Ali, Rolf H. H. Groenwold, Olaf H. Klungel, Propensity Score Methods and Unobserved Covariate Imbalance: Comments on “Squeezing the Balloon”, Health Services Research, 2014, 49, 3
  17. 17
    Gregory E. Tasian, Nicholas G. Cost, Candace F. Granberg, Jose E. Pulido, Marcelino Rivera, Zeyad Schwen, Marion Schulte, Janelle A. Fox, Tamsulosin and Spontaneous Passage of Ureteral Stones in Children: A Multi-Institutional Cohort Study, The Journal of Urology, 2014, 192, 2, 506

    CrossRef

  18. 18
    Carrie Maloney, Joel Miller, The Impact of a Risk Assessment Instrument on Juvenile Detention Decision-making: A Check on “Perceptual Shorthand” and “Going Rates”?, Justice Quarterly, 2014, 1

    CrossRef

  19. 19
    Peter C. Austin, Dylan S. Small, The use of bootstrapping when using propensity-score matching without replacement: a simulation study, Statistics in Medicine, 2014, 33, 24
  20. 20
    Toni Zhong, Christine B. Novak, Shaghayegh Bagher, Saskia W. M. C. Maass, Jing Zhang, Udi Arad, Anne C. O’Neill, Kelly A. Metcalfe, Stefan O. P. Hofer, Using Propensity Score Analysis to Compare Major Complications between DIEP and Free Muscle-Sparing TRAM Flap Breast Reconstructions, Plastic and Reconstructive Surgery, 2014, 133, 4, 774

    CrossRef

  21. 21
    Fidel Barrantes, Fu L Luan, Mallika Kommareddi, Kareem Alazem, Tareq Yaqub, Randy S Roth, Randall S Sung, Diane M Cibrik, Peter Song, Millie Samaniego, A history of chronic opioid usage prior to kidney transplantation may be associated with increased mortality risk, Kidney International, 2013, 84, 2, 390

    CrossRef

  22. 22
    Brian C. Sauer, M. Alan Brookhart, Jason Roy, Tyler VanderWeele, A review of covariate selection for non-experimental comparative effectiveness research, Pharmacoepidemiology and Drug Safety, 2013, 22, 11
  23. 23
    Brian S. Connelly, Paul R. Sackett, Shonna D. Waters, Balancing Treatment and Control Groups in Quasi-Experiments: An Introduction to Propensity Scoring, Personnel Psychology, 2013, 66, 2
  24. 24
    Luca Zanin, Rosalba Radice, Giampiero Marra, Estimating the Effect of Perceived Risk of Crime on Social Trust in the Presence of Endogeneity Bias, Social Indicators Research, 2013, 114, 2, 523

    CrossRef

  25. 25
    C. Leyrat, A. Caille, A. Donner, B. Giraudeau, Propensity scores used for analysis of cluster randomized trials with selection bias: a simulation study, Statistics in Medicine, 2013, 32, 19
  26. 26
    R. Gutman, D.B. Rubin, Robust estimation of causal effects of binary treatments in unconfounded studies with dichotomous outcomes, Statistics in Medicine, 2013, 32, 11
  27. 27
    Francesco Cottone, Fabio Efficace, Giovanni Apolone, Gary S. Collins, The added value of propensity score matching when using health-related quality of life reference data, Statistics in Medicine, 2013, 32, 29
  28. 28
    Peter C. Austin, The performance of different propensity score methods for estimating marginal hazard ratios, Statistics in Medicine, 2013, 32, 16
  29. 29
    Victor A. Ferraris, Erik Q. Ballert, Angela Mahan, The relationship between intraoperative blood transfusion and postoperative systemic inflammatory response syndrome, The American Journal of Surgery, 2013, 205, 4, 457

    CrossRef

  30. 30
    Nguyen Viet Cuong, Which covariates should be controlled in propensity score matching? Evidence from a simulation study, Statistica Neerlandica, 2013, 67, 2
  31. 31
    Etienne Gayat, Gabriel Thabut, Jason D. Christie, Alexandre Mebazaa, Jean-Yves Mary, Raphaël Porcher, Within-center matching performed better when using propensity score matching to analyze multicenter survival data: empirical and Monte Carlo studies, Journal of Clinical Epidemiology, 2013, 66, 9, 1029

    CrossRef

  32. 32
    Jeremy A. Rassen, Robert J. Glynn, Kenneth J. Rothman, Soko Setoguchi, Sebastian Schneeweiss, Applying propensity scores estimated in a full cohort to adjust for confounding in subgroup analyses, Pharmacoepidemiology and Drug Safety, 2012, 21, 7
  33. 33
    E. Gayat, R. Porcher, Comparaison de l’efficacité de deux thérapeutiques en l’absence de randomisation: intérêts et limites des méthodes utilisant les scores de propension, Réanimation, 2012, 21, 1, 109

    CrossRef

  34. 34
    Romain Pirracchio, Matthieu Resche-Rigon, Sylvie Chevret, Evaluation of the Propensity score methods for estimating marginal odds ratios in case of small sample size, BMC Medical Research Methodology, 2012, 12, 1, 70

    CrossRef

  35. You have free access to this content35
    Jeremy A. Rassen, Abhi A. Shelat, Jessica Myers, Robert J. Glynn, Kenneth J. Rothman, Sebastian Schneeweiss, One-to-many propensity score matching in cohort studies, Pharmacoepidemiology and Drug Safety, 2012, 21,
  36. 36
    Etienne Gayat, Matthieu Resche-Rigon, Jean-Yves Mary, Raphaël Porcher, Propensity score applied to survival data analysis through proportional hazards models: a Monte Carlo study, Pharmaceutical Statistics, 2012, 11, 3
  37. 37
    Yu Ye, Jason C. Bond, Laura A. Schmidt, Nina Mulia, Tammy W. Tam, Toward a better understanding of when to apply propensity scoring: a comparison with conventional regression in ethnic disparities research, Annals of Epidemiology, 2012, 22, 10, 691

    CrossRef

  38. 38
    Peter C. Austin, A Tutorial and Case Study in Propensity Score Analysis: An Application to Estimating the Effect of In-Hospital Smoking Cessation Counseling on Mortality, Multivariate Behavioral Research, 2011, 46, 1, 119

    CrossRef

  39. 39
    Peter C. Austin, An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies, Multivariate Behavioral Research, 2011, 46, 3, 399

    CrossRef

  40. 40
    Romain Pirracchio, Charles Sprung, Didier Payen, Sylvie Chevret, Benefits of ICU admission in critically ill patients: Whether instrumental variable methods or propensity scores should be used, BMC Medical Research Methodology, 2011, 11, 1, 132

    CrossRef

  41. 41
    Peter C. Austin, Comparing paired vs non-paired statistical methods of analyses when making inferences about absolute risk reductions in propensity-score matched samples, Statistics in Medicine, 2011, 30, 11
  42. 42
    Claudia Schmoor, Christine Gall, Susanne Stampf, Erika Graf, Correction of confounding bias in non-randomized studies by appropriate weighting, Biometrical Journal, 2011, 53, 2
  43. 43
    Philip S. Barie, Lynn J. Hydo, Jian Shou, Soumitra R. Eachempati, Efficacy of Therapy with Recombinant Human Activated Protein C of Critically Ill Surgical Patients with Infection Complicated by Septic Shock and Multiple Organ Dysfunction Syndrome, Surgical Infections, 2011, 12, 6, 443

    CrossRef

  44. 44
    Svetlana V. Belitser, Edwin P. Martens, Wiebe R. Pestman, Rolf H.H. Groenwold, Anthonius Boer, Olaf H. Klungel, Measuring balance and model selection in propensity score methods, Pharmacoepidemiology and Drug Safety, 2011, 20, 11
  45. 45
    Peter C. Austin, Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies, Pharmaceutical Statistics, 2011, 10, 2
  46. 46
    Romain Pirracchio, Charles L. Sprung, Didier Payen, Sylvie Chevret, Utility of time-dependent inverse-probability-of-treatment weights to analyze observational cohorts in the intensive care unit, Journal of Clinical Epidemiology, 2011, 64, 12, 1373

    CrossRef

  47. 47
    Navdeep Tangri, Shani Shastri, Hocine Tighiouart, Gerald J. Beck, Alfred K. Cheung, Garabed Eknoyan, Mark J. Sarnak, β-Blockers for Prevention of Sudden Cardiac Death in Patients on Hemodialysis: A Propensity Score Analysis of the HEMO Study, American Journal of Kidney Diseases, 2011, 58, 6, 939

    CrossRef

  48. 48
    Peter C. Austin, A Data-Generation Process for Data with Specified Risk Differences or Numbers Needed to Treat, Communications in Statistics - Simulation and Computation, 2010, 39, 3, 563

    CrossRef

  49. 49
    P Sekula, A Caputo, A Dunant, J-C Roujeau, M Mockenhaupt, A Sidoroff, M Schumacher, An application of propensity score methods to estimate the treatment effect of corticosteroids in patients with severe cutaneous adverse reactions, Pharmacoepidemiology and Drug Safety, 2010, 19, 1
  50. 50
    Abhaya V. Kulkarni, James M. Drake, John R.W. Kestle, Conor L. Mallucci, Spyros Sgouros, Shlomi Constantini, Endoscopic Third Ventriculostomy Vs Cerebrospinal Fluid Shunt in the Treatment of Hydrocephalus in Children, Neurosurgery, 2010, 67, 3, 588

    CrossRef

  51. 51
    Susanne Stampf, Erika Graf, Claudia Schmoor, Martin Schumacher, Estimators and confidence intervals for the marginal odds ratio using logistic regression and propensity score stratification, Statistics in Medicine, 2010, 29, 7-8
  52. 52
    Etienne Gayat, Romain Pirracchio, Matthieu Resche-Rigon, Alexandre Mebazaa, Jean-Yves Mary, Raphaël Porcher, Propensity scores in intensive care and anaesthesiology literature: a systematic review, Intensive Care Medicine, 2010, 36, 12, 1993

    CrossRef

  53. 53
    P. C. Austin, Statistical Criteria for Selecting the Optimal Number of Untreated Subjects Matched to Each Treated Subject When Using Many-to-One Matching on the Propensity Score, American Journal of Epidemiology, 2010, 172, 9, 1092

    CrossRef

  54. 54
    Peter C. Austin, The performance of different propensity-score methods for estimating differences in proportions (risk differences or absolute risk reductions) in observational studies, Statistics in Medicine, 2010, 29, 20
  55. 55
    Lawrence C. McCandless, Paul Gustafson, Peter C. Austin, Bayesian propensity score analysis for observational data, Statistics in Medicine, 2009, 28, 1
  56. 56
    José Labarère, Marie-Antoinette Sevestre, Joël Belmin, Annie Legagneux, Marie-Thérèse Barrellier, Hélène Thiel, Philippe Le Roux, Gilles Pernod, Jean-Luc Bosson, Low-Molecular-Weight Heparin Prophylaxis of Deep Vein Thrombosis for Older Patients with Restricted Mobility, Drugs & Aging, 2009, 26, 3, 263

    CrossRef

  57. 57
    Peter C. Austin, Some Methods of Propensity-Score Matching had Superior Performance to Others: Results of an Empirical Investigation and Monte Carlo simulations, Biometrical Journal, 2009, 51, 1
  58. 58
    Maral Ouzounian, Jack V. Tu, Peter C. Austin, Alice Chong, Peter P. Liu, Douglas S. Lee, Statin Therapy and Clinical Outcomes in Heart Failure: A Propensity-Matched Analysis, Journal of Cardiac Failure, 2009, 15, 3, 241

    CrossRef

  59. 59
    Peter C. Austin, Douglas S. Lee, The concept of the marginally matched subject in propensity-score matched analyses, Pharmacoepidemiology and Drug Safety, 2009, 18, 6
  60. 60
    Joseph A. C. Delaney, Robert W. Platt, Samy Suissa, The impact of unmeasured baseline effect modification on estimates from an inverse probability of treatment weighted logistic model, European Journal of Epidemiology, 2009, 24, 7, 343

    CrossRef

  61. 61
    Erika Graf, Martin Schumacher, Comments on ‘The performance of different propensity score methods for estimating marginal odds ratios’ by Peter C. Austin, Statistics in Medicine 2007; 26(16):3078–3094, Statistics in Medicine, 2008, 27, 19
  62. 62
    Peter C. Austin, Discussion of ‘A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003’, Statistics in Medicine, 2008, 27, 12
  63. 63
    Peter W. Groeneveld, Mary Anne Matta, Alexis P. Greenhut, Feifei Yang, Drug-Eluting Compared With Bare-Metal Coronary Stents Among Elderly Patients, Journal of the American College of Cardiology, 2008, 51, 21, 2017

    CrossRef

  64. 64
    Shyoko Honiden, Atara Schultz, Shelly A. Im, David M. Nierman, Michelle N. Gong, Early versus late intravenous insulin administration in critically ill patients, Intensive Care Medicine, 2008, 34, 5, 881

    CrossRef

  65. 65
    Zhiwei Zhang, Estimating a Marginal Causal Odds Ratio Subject to Confounding, Communications in Statistics - Theory and Methods, 2008, 38, 3, 309

    CrossRef

  66. 66
    Peter C. Austin, Goodness-of-fit diagnostics for the propensity score model when estimating treatment effects using covariate adjustment with the propensity score, Pharmacoepidemiology and Drug Safety, 2008, 17, 12
  67. 67
    Peter C. Austin, Inverse probability weighted estimation of the marginal odds ratio, Statistics in Medicine, 2008, 27, 26
  68. 68
    Andrew Forbes, Susan Shortreed, Inverse probability weighted estimation of the marginal odds ratio: Correspondence regarding ‘The performance of different propensity score methods for estimating marginal odds ratios’ by P. Austin, Statictics in Medicine, 2007; 26:3078–3094, Statistics in Medicine, 2008, 27, 26
  69. 69
    Gregory A. Nuttall, Timothy T. Houle, Liars, Damn Liars, and Propensity Scores, Anesthesiology, 2008, 108, 1, 3

    CrossRef

  70. 70
    Jean-Luc Fellahi, Jean-Jacques Parienti, Jean-Luc Hanouz, Benoît Plaud, Bruno Riou, Alexandre Ouattara, Perioperative Use of Dobutamine in Cardiac Surgery and Adverse Cardiac Outcome, Anesthesiology, 2008, 108, 6, 979

    CrossRef

  71. 71
    E. P Martens, W. R Pestman, A. de Boer, S. V Belitser, O. H Klungel, Systematic differences in treatment effect estimates between propensity score methods and logistic regression, International Journal of Epidemiology, 2008, 37, 5, 1142

    CrossRef

  72. 72
    Bechien U. Wu, Richard S. Johannes, Stephen Kurtz, Peter A. Banks, The Impact of Hospital-Acquired Infection on Outcome in Acute Pancreatitis, Gastroenterology, 2008, 135, 3, 816

    CrossRef

  73. 73
    Peter C. Austin, The performance of different propensity score methods for estimating marginal odds ratios, Statistics in Medicine 2007; 26:3078–3094, Statistics in Medicine, 2008, 27, 19
  74. 74
    Peter C. Austin, The performance of different propensity-score methods for estimating relative risks, Journal of Clinical Epidemiology, 2008, 61, 6, 537

    CrossRef

  75. 75
    Peter C. Austin, James Stafford, The Performance of Two Data-Generation Processes for Data with Specified Marginal Treatment Odds Ratios, Communications in Statistics - Simulation and Computation, 2008, 37, 6, 1039

    CrossRef

  76. 76
    Peter C. Austin, Propensity-score matching in the cardiovascular surgery literature from 2004 to 2006: A systematic review and suggestions for improvement, The Journal of Thoracic and Cardiovascular Surgery, 2007, 134, 5, 1128

    CrossRef