• 1
    Gilks WR, Thomas A, Spiegelhalter DJ. A language and program for complex Bayesian modelling. The Statistician 1994; 43:169178.
  • 2
    Geman S, Geman D. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis 1984; 6:721741.
  • 3
    Gelfand AE, Smith AFM. Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association 1990; 85:398409.
  • 4
    Lawson AB, Browne WJ, Vidal Rodeiro CL. Disease Mapping with WinBUGS and MLwiN. Statistics in Practice. Wiley: Chichester, 2004.
  • 5
    Mu S, Ludden TM. Estimation of population pharmacokinetic parameters in the presence of non-compliance. Journal of Pharmacokinetics and Pharmacodynamics 2003; 30:5381.
  • 6
    McCarthy MA, Parris KM. Clarifying the effect of toe clipping on frogs with Bayesian statistics. Journal of Applied Ecology 2004; 41:780786.
  • 7
    O'Hagan A, Stevens JW, Montmartin J. Bayesian cost-effectiveness analysis from clinical trial data. Statistics in Medicine 2001; 20:733753.
  • 8
    Scurrah KL, Palmer LJ, Burton PR. Variance components analysis for pedigree-based censored survival data using generalized linear mixed models (GLMMs) and Gibbs sampling in BUGS. Genetic Epidemiology 2000; 19:127148.
  • 9
    Millard A, Gowland R. A Bayesian approach to the estimation of age of humans from toothwear. Archeologia e Calcolatori 2002; 13:197210.
  • 10
    Eaves L, Erkanli A, Silberg J, Angold A, Maes HH, Foley D. Application of Bayesian inference using Gibbs sampling to item-response theory modeling of multi-symptom genetic data. Behavior Genetics 2005; 35:765780.
  • 11
    Milheiro-Oliveira P. Bayesian statistical methods for modeling and prediction of major landslides in coastal cliffs. Coastal Engineering Journal 2007; 49:4561.
  • 12
    Ayers E, Junker B. IRT modeling of tutor performance to predict end-of-year exam scores. Educational and Psychological Measurement 2008; 68:972987.
  • 13
    Chevrolat J-P, Golmard J-L, Ammar S, Jouvent R, Boisvieux J-F. Modelling behavioral syndromes using Bayesian networks. Artificial Intelligence in Medicine 1998; 14:259277.
  • 14
    Meyer R, Yu J. BUGS for a Bayesian analysis of stochastic volatility models. Econometrics Journal 2000; 3:198215.
  • 15
    Weihs C, Ligges U. Parameter optimization in automatic transcription of music. In From Data and Information Analysis to Knowledge Engineering: Proceedings of the 29th Annual Conference of the Gesellschaft für Klassifikation e.V. University of Magdeburg, 9–11 March 2005, Spiliopoulou M, Kruse R, Borgelt C, Nürnberger A, Gaul W (eds), Studies in Classification, Data Analysis, and Knowledge Organization. Springer: Berlin, 2006; 740747.
  • 16
    Swartz TB, Gill PS, Beaudoin D, deSilva BM. Optimal batting orders in one-day cricket. Computers and Operations Research 2006; 33:19391950.
  • 17
    Wyatt RJ. Mapping the abundance of riverine fish populations: integrating hierarchical Bayesian models with a geographic information system (GIS). Canadian Journal of Fisheries and Aquatic Sciences 2003; 60:9971006.
  • 18
    Katsis A, Ntzoufras I. Bayesian hypothesis testing for the distribution of insurance claim counts using the Gibbs sampler. Journal of Computational Methods in Science and Engineering 2005; 5:201214.
  • 19
    Gelman A, Hill J. Data Analysis using Regression and Multilevel/Hierarchical Models. Cambridge University Press: Cambridge, 2007.
  • 20
    Carlin BP, Louis TA. Bayesian Methods for Data Analysis (3rd edn). CRC Press: Boca Raton, 2008.
  • 21
    Congdon P. Bayesian Statistical Modelling. Wiley: Chichester, 2001.
  • 22
    Lawson AB. Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology. CRC Press: Boca Raton, 2009.
  • 23
    Woodworth GG. Biostatistics: A Bayesian Introduction. Wiley: New York, 2004.
  • 24
    Broemeling LD. Bayesian Biostatistics and Diagnostic Medicine. CRC Press: Boca Raton, 2007.
  • 25
    Ntzoufras I. Bayesian Modeling using WinBUGS. Wiley: New York, 2009.
  • 26
    Gill J. Bayesian Methods: A Social and Behavioral Sciences Approach. Chapman & Hall, CRC: London, Boca Raton, 2002.
  • 27
    Spiegelhalter DJ. Bayesian graphical modelling: a case-study in monitoring health outcomes. Applied Statistics 1998; 47:115133.
  • 28
    Stefik M, Bobrow DG. Object-oriented programming: themes and variations. The AI Magazine 1985; 6(4):4062.
  • 29
    Lauritzen SL, Dawid AP, Larsen BN, Leimer HG. Independence properties of directed Markov fields. Networks 1990; 20:491505.
  • 30
    Szyperski C. Component-oriented programming: a refined variation of object-oriented programming. The Oberon Tribune 1995; 1:15.
  • 31
    Spiegelhalter DJ, Knill-Jones RP. Statistical and knowledge-based approaches to clinical decision-support systems, with an application in gastroenterology (with Discussion). Journal of the Royal Statistical Society, Series A 1984; 147:3577.
  • 32
    Pearl J. Reverend Bayes on inference engines: a distributed hierarchical approach. Proceedings of the American Association for Artificial Intelligence National Conference on AI, Pittsburgh, 1982; 133136.
  • 33
    Spiegelhalter DJ. Probabilistic reasoning in predictive expert systems. In Uncertainty in Artificial Intelligence, Kanal LN, Lemmer J (eds). North-Holland: Amsterdam, 1986; 4768.
  • 34
    Kim JH, Pearl J. A computational model for combined causal and diagnostic reasoning in inference systems. Proceedings of the IJCAI-83, Karlsruhe, Germany, 1983; 190193.
  • 35
    Lauritzen SL, Spiegelhalter DJ. Local computations with probabilities on graphical structures and their application to expert systems (with Discussion). Journal of the Royal Statistical Society, Series B 1988; 50:157224.
  • 36
    Pearl J. Evidential reasoning using stochastic simulation. Artificial Intelligence 1987; 32:245257.
  • 37
    Spiegelhalter DJ, Lauritzen SL. Sequential updating of conditional probabilities on directed graphical structures. 1990; 20:579605.
  • 38
    Lunn DJ, Thomas A, Best N, Spiegelhalter D. WinBUGS—a Bayesian modelling framework: concepts, structure, and extensibility. Statistics and Computing 2000; 10:325337.
  • 39
    Wirth N. Programming in Modula-2. Springer: Santa Clara, 1983.
  • 40
    Thomas A, Spiegelhalter DJ, Gilks WR. BUGS: a program to perform Bayesian inference using Gibbs sampling. In Bayesian Statistics, Bernardo JM, Berger JO, Dawid AP, Smith AFM (eds), vol. 4. Oxford University Press: Oxford, U.K., 1992; 837842.
  • 41
    Gilks WR, Richardson S, Spiegelhalter DJ. Markov Chain Monte Carlo in Practice. Chapman & Hall: London, 1996.
  • 42
    Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equations of state calculations by fast computing machines. Journal of Chemical Physics 1953; 21:10871091.
  • 43
    Hastings WK. Monte Carlo sampling-based methods using Markov chains and their applications. Biometrika 1970; 57:97109.
  • 44
    Oberon Microsystems Inc. Component Pascal Language Report. Technical Report, Oberon Microsystems Inc., Zurich, 2001.
  • 45
    Jones R, Lins R. Garbage Collection: Algorithms for Automatic Dynamic Memory Management. Wiley: New York, 1996.
  • 46
    Gelman A, Gilks WR, Roberts GO. Weak convergence and optimal scaling of random walk Metropolis algorithms. Annals of Applied Probability 1997; 7:110120.
  • 47
    Neal RM. Markov chain Monte Carlo methods based on ‘slicing’ the density function. Technical Report 9722, Department of Statistics, University of Toronto, 1997.
  • 48
    Hethcote HW. The mathematics of infectious diseases. SIAM Review 2000; 42:599653.
  • 49
    Jones DS, Sleeman BD. Differential Equations and Mathematical Biology. Chapman & Hall: Boca Raton, 2003.
  • 50
    Lunn DJ. Bayesian analysis of population pharmacokinetic/pharmacodynamic models. In Probabilistic Modeling in Bioinformatics and Medical Informatics, Husmeier D, Dybowski R, Roberts S (eds). Springer: London, 2005; 351370.
  • 51
    Lunn DJ. WinBUGS Development Interface (WBDev). ISBA Bulletin 2003; 10(3):1011.
  • 52
    Lunn DJ, Best N, Whittaker JC. Generic reversible jump MCMC using graphical models. Statistics and Computing 2008; DOI: 10.1007/s11222-008-9100-0.
  • 53
    Lunn DJ, Whittaker JC, Best N. A Bayesian toolkit for genetic association studies. Genetic Epidemiology 2006; 30:231247.
  • 54
    Lunn DJ. Automated covariate selection and Bayesian model averaging in population PK/PD models. Journal of Pharmacokinetics and Pharmacodynamics 2008; 35:85100.
  • 55
    Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A. Bayesian measures of model complexity and fit (with Discussion). Journal of the Royal Statistical Society, Series B 2002; 64:583639.
  • 56
    Plummer M. Penalized loss functions for Bayesian model comparison. Biostatistics 2008; 9:523539.
  • 57
    Celeux G. Mixture models for classification. In Advances in Data Analysis, Decker R, Lenz HJ (eds). Springer: Berlin, 2007; 314.
  • 58
    Lunn D, Best N, Spiegelhalter D, Graham G, Neuenschwander B. Combining MCMC with ‘sequential’ PKPD modelling. Journal of Pharmacokinetics and Pharmacodynamics 2009; DOI: 10.1007/s10928-008-9109-1.
  • 59
    Rasbash J, Browne W, Goldstein H, Yang M, Plewis I, Healy M, Woodhouse G, Draper D, Langford I, Lewis T. A User's Guide to MLwiN (2nd edn). Institute of Education: London, 2000.
  • 60
    Plummer M. JAGS Version 1.0.3 Manual. IARC: Lyon, France, 2008.
  • 61
    SAS Institute Inc. SAS/STAT 9.2 User's Guide. SAS Institute Inc.: Cary, NC, 2008.