Generalized multidimensional dynamic allocation method

Authors


Jonathan Lebowitsch, Medidata Solutions, New York, NY 10003, U.S.A.

E-mail: jlebowitsch@mdsol.com

Abstract

Dynamic allocation has received considerable attention since it was first proposed in the 1970s as an alternative means of allocating treatments in clinical trials which helps to secure the balance of prognostic factors across treatment groups. The purpose of this paper is to present a generalized multidimensional dynamic allocation method that simultaneously balances treatment assignments at three key levels: within the overall study, within each level of each prognostic factor, and within each stratum, that is, combination of levels of different factors Further it offers capabilities for unbalanced and adaptive designs for trials. The treatment balancing performance of the proposed method is investigated through simulations which compare multidimensional dynamic allocation with traditional stratified block randomization and the Pocock–Simon method. On the basis of these results, we conclude that this generalized multidimensional dynamic allocation method is an improvement over conventional dynamic allocation methods and is flexible enough to be applied for most trial settings including Phases I, II and III trials. Copyright © 2012 John Wiley & Sons, Ltd.

Ancillary