Disclosure control using partially synthetic data for large-scale health surveys, with applications to CanCORS


Correspondence to: Bronwyn Loong, Research School of Finance, Actuarial Studies and Applied Statistics, College of Business and Economics Building 26C, The Australian National University, Canberra, ACT 0200, Australia.

E-mail: bronwyn.loong@anu.edu.au


Statistical agencies have begun to partially synthesize public-use data for major surveys to protect the confidentiality of respondents’ identities and sensitive attributes by replacing high disclosure risk and sensitive variables with multiple imputations. To date, there are few applications of synthetic data techniques to large-scale healthcare survey data. Here, we describe partial synthesis of survey data collected by the Cancer Care Outcomes Research and Surveillance (CanCORS) project, a comprehensive observational study of the experiences, treatments, and outcomes of patients with lung or colorectal cancer in the USA. We review inferential methods for partially synthetic data and discuss selection of high disclosure risk variables for synthesis, specification of imputation models, and identification disclosure risk assessment. We evaluate data utility by replicating published analyses and comparing results using original and synthetic data and discuss practical issues in preserving inferential conclusions. We found that important subgroup relationships must be included in the synthetic data imputation model, to preserve the data utility of the observed data for a given analysis procedure. We conclude that synthetic CanCORS data are suited best for preliminary data analyses purposes. These methods address the requirement to share data in clinical research without compromising confidentiality. Copyright © 2013 John Wiley & Sons, Ltd.