SEARCH

SEARCH BY CITATION

References

  • 1
    Davidian M, Louis TA. Why statistics? Science 2012; 336(6077):12.
  • 2
    ICH harmonised tripartite guideline. Statistical principles for clinical trials. International conference on harmonisation E9 expert working group. Statistics in Medicine 1999; 18(15):19051942.
  • 3
  • 4
    Begg C, Cho M, Eastwood S, Horton R, Moher D, Olkin I, Pitkin R, Rennie D, Schulz KF, Simel D, Stroup DF. Improving the quality of reporting of randomized controlled trials. The CONSORT statement. JAMA: The Journal of the American Medical Association 1996; 276(8):637639.
  • 5
    Schulz KF, Altman DG, Moher D, CONSORT Group. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMJ (Clinical research ed.) 2010; 340:c332.
  • 6
    Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig LM, Lijmer JG, Moher D, Rennie D, de Vet HC. Standards for reporting of diagnostic accuracy. Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. Standards for reporting of diagnostic accuracy. Clinical Chemistry 2003; 49(1):16.
  • 7
    McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM. Statistics subcommittee of the NCI-EORTC working group on cancer diagnostics. Reporting recommendations for tumor marker prognostic studies (REMARK). Journal of the National Cancer Institute 2005; 97(16):11801184.
  • 8
    Elm E von, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. STROBE initiative. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Epidemiology (Cambridge, Mass.) 2007; 18(6):800804.
  • 9
    Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig LM, Moher D, Rennie D, Vet HCW de, Lijmer JG. Standards for reporting of diagnostic accuracy. The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration. Clinical Chemistry 2003; 49(1):718.
  • 10
    Vandenbroucke JP, Elm Evon, Altman DG, Gøtzsche PC, Mulrow CD, Pocock SJ, Poole C, Schlesselman JJ, Egger M. STROBE initiative. Strengthening the reporting of observational studies in epidemiology (STROBE): explanation and elaboration. PLoS Medicine 2007; 4(10):e297.
  • 11
    Altman DG, McShane LM, Sauerbrei W, Taube SE. Reporting recommendations for tumor marker prognostic studies (REMARK): explanation and elaboration. PLoS Medicine 2012; 9(5):e1001216.
  • 12
    Ioannidis JP. Why most published research findings are false. PLoS Medicine 2005/08/01; 2(8):e124.
  • 13
    Unreliable research: trouble at the lab, The Economist 19/10/2013.
  • 14
    Turner L, Shamseer I, Altman D, Schulz K, Moher D. Does use of the CONSORT statement impact the completeness of reporting of randomised controlled trials published in medical journals? A Cochrane review. System Review 2012; 1:60.
  • 15
    Moher D, Hopewell S, Schulz KF, Montori V, Gøtzsche PC, Devereaux PJ, Elbourne D, Egger M, Altman DG. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ (Clinical research ed.) 2010; 340:c869.
  • 16
    Simon R, Altman DG. Statistical aspects of prognostic factor studies in oncology. British Journal of Cancer 1994; 69(6):979985.
  • 17
    Rushton L. Reporting of occupational and environmental research: use and misuse of statistical and epidemiological methods. Occupational and Environmental Medicine 2000; 57(1):19.
  • 18
    Dufault B, Klar N. The quality of modern cross-sectional ecologic studies: a bibliometric review. American Journal of Epidemiology 1101–1107; 174(10).
  • 19
    Niven DJ, Berthiaume LR, Fick GH, Laupland KB. Matched case-control studies: a review of reported statistical methodology. Clinical Epidemiology 2012; 4:99110.
  • 20
    Altman DG, Lausen B, Sauerbrei W, Schumacher M. Dangers of using “optimal” cutpoints in the evaluation of prognostic factors. Journal of the National Cancer Institute 1994; 86(11):829835.
  • 21
    Riley RD, Abrams KR, Sutton AJ, Lambert PC, Jones DR, Heney D, Burchill SA. Reporting of prognostic markers: current problems and development of guidelines for evidence-based practice in the future. British Journal of Cancer 2003; 88(8):11911198.
  • 22
    Mallett S, Royston P, Dutton S, Waters R, Altman DG. Reporting methods in studies developing prognostic models in cancer: a review. BMC Medicine 2010; 8:20.
  • 23
    Mallett S, Timmer A, Sauerbrei W, Altman DG. Reporting of prognostic studies of tumour markers: a review of published articles in relation to REMARK guidelines. British Journal of Cancer 2010; 102:173180.
  • 24
    Malats N, Bustos A, Nascimento CM, Fernandez F, Rivas M, Puente D, Kogevinas M. Real FX. P53 as a prognostic marker for bladder cancer: a meta-analysis and review. Lancet Oncology 2005/09/01; 6(9):678686.
  • 25
    Matthews JNS, Altman DG. Statistics notes: interaction 2: compare effect sizes not P values. BMJ 1996; 313:808.
  • 26
    Nieuwenhuis S, Forstmann BU, Wagenmakers E. Erroneous analyses of interactions in neuroscience: a problem of significance. Nature Neuroscience 2011; 14(9):11051107.
  • 27
    Sigounas DE, Tatsioni A, Christodoulou DK, Tsianos EV, Ioannidis JPA. New prognostic markers for outcome of acute pancreatitis: overview of reporting in 184 studies. Pancreas 2011; 40(4):522532.
  • 28
    Collins GS, Mallett S, Omar O, Yu L. Developing risk prediction models for type 2 diabetes: a systematic review of methodology and reporting. BMC Medicine 2011; 9:103.
  • 29
    van Walraven C, Davis D, Forster AJ, Wells GA. Time-dependent bias was common in survival analyses published in leading clinical journals. Journal of Clinical Epidemiology 2004; 57(7):672682.
  • 30
    Altman DG, Stavola BL, de Love SB, Stepniewska KA. Review of survival analyses published in cancer journals. British Journal of Cancer 1995; 72(2):511518.
  • 31
    Hippisley-Cox J, Coupland C, Vinogradova Y, Robson J, May M, Brindle P. Derivation and validation of QRISK, a new cardiovascular disease risk score for the United Kingdom: prospective open cohort study. BMJ 2007; 335(7611):136.
  • 32
    Sterne JAC, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, Wood AM, Carpenter JR. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ (Clinical research ed.) 2009; 338:b2393.
  • 33
    Morris TP, White IR, Royston P, Seaman SR, Wood AM. Multiple imputation for an incomplete covariate that is a ratio. Statistics in Medicine 2014; 33(1):88104.
  • 34
    Remontet L, Bossard N, Belot A, Estève J. French network of cancer registries FRANCIM. An overall strategy based on regression models to estimate relative survival and model the effects of prognostic factors in cancer survival studies. Statistics in Medicine 2007; 26(10):22142228.
  • 35
    Quantin C, Abrahamowicz M, Moreau T, Bartlett G, MacKenzie T, Tazi MA, Lalonde L, Faivre J. Variation over time of the effects of prognostic factors in a population-based study of colon cancer: comparison of statistical models. American Journal of Epidemiology 1999; 150(11):11881200.
  • 36
    Gray RJ. Flexible methods for analysing survival data using splines. Journal of the American Statistical Association 1992; 87:942951.
  • 37
    Box GE, Draper NR. Empirical Model-building and Response Surfaces. Wiley: New York, 1987.
  • 38
    Kannel WB, Cupples LA, D'Agostino RB. Sudden death risk in overt coronary heart disease: the Framingham Study. American Heart Journal 1987; 113(3):799804.
  • 39
    Sytkowski PA, Kannel WB, D'Agostino RB. Changes in risk factors and the decline in mortality from cardiovascular disease. The Framingham Heart Study. The New England Journal of Medicine 1990; 322(23):16351641.
  • 40
    Benjamin EJ, Levy D, Vaziri SM, D'Agostino RB, Belanger AJ, Wolf PA. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. JAMA: The Journal of the American Medical Association 1994; 271(11):840844.
  • 41
    Gagnier JJ, Moher D, Boon H, Beyene J, Bombardier C. Investigating clinical heterogeneity in systematic reviews: a methodologic review of guidance in the literature. BMC Medical Research Methodology 2012; 12(1):111.
  • 42
    Fitzmaurice GM, Kenward MG, Molenberghs G, Tsiatis AA, Verbeke G. Handbook of Missing Data. CRC Press: New York, 2014.
  • 43
    Little RJ, Rubin DB. Statistical Analysis with Missing Data. John Wiley and Sons Ltd: Chichester, 2002.
  • 44
    National Research Council (U.S.) The Prevention and Treatment of Missing Data in Clinical Trials. National Academies Press: Washington D.C, 2010.
  • 45
    Carpenter JR, Kenward MG, Goldstein H. In Statistical Modelling of Partially Observed Data Using Multiple Imputation: Principles and Practice, Tu Y, Greenwood D (eds). Springer: New York, 2012; 1523.
  • 46
    Carpenter JR, Kenward MG. Multiple Imputation and its Application. John Wiley & Sons Ltd: Chichester, 2013.
  • 47
    Harrell FE. Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis. Springer: New York, 2001.
  • 48
    Sauerbrei W, Royston P, Binder H. Selection of important variables and determination of functional form for continuous predictors in multivariable model building. Statistics in Medicine 2007; 26:55125528.
  • 49
    Miller A. Subset Selection in Regression. Taylor & Francis: Boca Raton, Florida, 2002.
  • 50
    Greenland S. Avoiding power loss associated with categorization and ordinal scores in dose-response and trend analysis. Epidemiology (Cambridge, Mass.) 1995; 6(4):450454.
  • 51
    Royston P, Altman DG. Regression using fractional polynomials of continuous covariates: parsimonious parametic modelling. Applied Statistic 1994; 43(3):429467.
  • 52
    Royston P, Sauerbrei W. Multivariable Model-building. A Pragmatic Approach to Regression Analysis Based on Fractional Polynomials for Continuous Variables. Wiley: Chichester, 2008.
  • 53
    Boer C de. A Practical Guide to Splines revised edn. Springer: New York, 2001.
  • 54
    Wood S. Generalized Additive Models. Chapman & Hall/CRC: New York, 2006.
  • 55
    Hastie T, Tibshirani R.. Generalized Additive Models. Chapman & Hall/CRC: New York, 1990.
  • 56
    Abrahamowicz M, Du Berger R, Grover SA. Flexible modeling of the effects of serum cholesterol on coronary heart disease mortality. American Journal of Epidemiology 1997; 145(8):714729.
  • 57
    Binder H, Sauerbrei W, Royston P. Comparison between splines and fractional polynomials for multivariable model building with continuous covariates: a simulation study with continuous response. Statistics in Medicine 2013; 32(13):22622277.
  • 58
    Abrahamowicz M, MacKenzie TA. Joint estimation of time-dependent and non-linear effects of continuous covariates on survival. Statistics in Medicine (Stat Med) 2007; 26(2):392408.
  • 59
    van den Broeck J, Cunningham SA, Eeckels R, Herbst K. Data cleaning: detecting, diagnosing, and editing data abnormalities. PLoS Medicine 2005; 2(10):e267.
  • 60
    Chatfield C. Confessions of a pragmatic statistician. Journal of the Royal Statistical Society. Series D (The Statistician) 2002; 51(Part 1):120.
  • 61
    Cox D, Donnelly C, Preliminary analysis. In Principles of Applied Statistics. Cambridge University Press: Cambridge, 2011.
  • 62
    George DS, Shah E. Data dredging, bias, or confounding. BMJ 2002; 325(7378):14371438.
  • 63
    Baggerly KA, Coombes KR. Deriving chemosensitivity from cell lines: forensic bioinformatics and reproducible research in high-throughput biology. The Annals of Applied Statistics 2009; 3(4):13091334.
  • 64
    Vach W. Transformation of covariates. In Regression Models as a Tool in Medical Research. Taylor & Francis Group: Boca Raton, FL, USA, 264273.
  • 65
    Buonaccorsi JP. Measurement Error: Models, Methods, and Applications. Chapman & Hall/CRC: Boca Raton, Florida, 2010.
  • 66
    Carroll RJ, Ruppert D, Stefanski LA, Crainiceanu CM. Measurement Error in Nonlinear Models: A Modern Perspective, Second Edition. Chapman and Hall/CRC Press: Boca Raton, Florida, 2006.
  • 67
    Gustafson P. Measurement Error and Misclassification in Statistics and Epidemiology. Chapman & Hall/CRC: Boca Raton, Florida, 2004.
  • 68
    Hill AB. The environment and disease: association or causation? Proceedings of the Royal Society of Medicine 1965; 58:295300.
  • 69
    Pearce N. Epidemiology in a changing world: variation, causation and ubiquitous risk factors. International Journal of Epidemiology 2011; 40:503512.
  • 70
    Rothman KJ, Greenland S, Lash TL. Modern Epidemiology 3rd ed. Lippincott Williams & Wilkins: Philadelphia, 2008.
  • 71
    Pepe M. The Statistical Evaluation of Medical Tests for Classification and Prediction. Oxford University Press: Oxford, 2003.
  • 72
    Zhou X, Obuchowski N, McClish D. Statistical Methods in Diagnostic Medicine. John Wiley & Sons Ltd: New York, 2002.
  • 73
    Bossuyt PM, Irwig L, Craig J, Glasziou P. Comparative accuracy: assessing new tests against existing diagnostic pathways. BMJ 2006; 332:10891092.
  • 74
    Hayen A, Macaskill P, Irwig L, Bossuyt P. Appropriate statistical methods are required to assess diagnostic tests for replacement, add-on, and triage. Journal of Clinical Epidemiology 2010; 63(8):883891.
  • 75
    Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, Pencina MJ, Kattan MW. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology 2010; 21(1):128138.
  • 76
    Steyerberg EW, Pencina MJ, Lingsma HF, Kattan MW, Vickers AJ, Van Calster B§. Assessing the incremental value of diagnostic and prognostic markers: a review and illustration. European Journal of Clinical Investigation 2012; 42(2):216228.
  • 77
    Pepe MS, Kerr KF, Longton G, Wang Z. Testing for improvement in prediction model performance. Statistics in Medicine 2013; 32(9):14671482.
  • 78
    Hunink MGM§, Glasziou PP, Siegel JE, Weeks JC, Pliskin JS, Elstein AS, Weinstein MC. Decision Making in Health and Medicine. Integrating Evidence and Values. Cambridge University Press: Cambridge, UK, 2001.
  • 79
    Daniel RM, Cousens SN, Stavola BL de, Kenward MG, Sterne JAC. Methods for dealing with time-dependent confounding. Statistics in Medicine 2013; 32(9):15841618.
  • 80
    Pearl J§. Causal diagrams for empirical research. (With discussion). Biometrika 1995; 82(4):669710.
  • 81
    Fischer-Lapp K, Goetghebeur E. Practical properties of some structural mean analyses of the effect of compliance in randomized trials. Controlled Clinical Trials 1999; 20(6):531546.
  • 82
    Gagne JJ, Polinski JM, Avorn J, Glynn RJ, Seeger JD. Standards for causal inference methods in analyses of data from observational and experimental studies in patient-centered outcomes research, 2012. For: Patient-Centered Outcome Research Institute Methodology Committee.
  • 83
    Hernan§ MA, Brumback B, Robins JM. Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men. Epidemiology 2000; 11(5):561570.
  • 84
    Hernan MA, Alonso A, Logan R, Grodstein F, Michels KB, Willett WC, Manson JE, Robins JM. Observational studies analyzed like randomized experiments: an application to postmenopausal hormone therapy and coronary heart disease. Epidemiology 2008; 19(6):766779.
  • 85
    Moodie EE, Richardson TS, Stephens DA. Demystifying optimal dynamic treatment regimes. Biometrics 2007; 63(2):447455.
  • 86
    Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika 1983; 70(1):4155.
  • 87
    Sterne JTK. G-estimation of causal effects, allowing for time-varying confounding. The Stata Journal 2002; 2(2):164182.
  • 88
    Valeri L, VanderWeele T. Mediation analysis allowing for exposure-mediator interactions and causal interpretation: theoretical assumptions and implementation with SAS and SPSS macros. Psychological Methods 2003; 18:164182.
  • 89
    Vansteelandt S, Bowden J, Babanezhad MGE. On instrumental variables estimation of causal odds ratios. Statistical Science 2011; 26(3).