• carbon nanotubes;
  • composites;
  • conducting materials;
  • ionic liquids;
  • mechanical properties


Free-radical polymerization of an imidazolium ion-based ionic liquid bearing a methacrylate group, gelling with single-walled carbon nanotubes (SWNTs), allows fabrication of a mechanically reinforced, electroconductive soft material (bucky plastic). A film sample of this material displays an excellent conductivity of 1 S cm−1 and a 120-fold enhancement of the Young’s modulus at a 7 wt % content of SWNTs. The conductivity is temperature-dependent in the range 5–300 K, suggesting that the conductive process involves carrier hopping. Scanning electron and atomic force micrographs of a bucky plastic film display the presence of crosslinked networks consisting of finely dispersed SWNTs. Such nanotube networks, developed in the polymer matrix, likely suppress slipping of entrapped polymer molecules via a strong interfacial interaction and also facilitate intertubular carrier transport. Although a bucky plastic derived from a vinylimidazolium ion-based ionic liquid monomer shows a comparable conductivity to that of the methacrylate version, the film is brittle irrespective of the presence or absence of SWNTs.