Advertisement

Single-Molecule Investigations of a Photoswitchable Nanodevice

Authors

  • Gregor Heiss,

    1. Department für Chemie und Biochemie and Center for Nanoscience (CeNS) Ludwig-Maximilians-Universität München Butenandtstrasse 11, 81377, Munich (Germany)
    Search for more papers by this author
  • Vidmantes Lapiene,

    1. Fakultät Chemie, Biologisch-Chemische Mikrostrukturtechnik Technische Universität Dortmund Otto-Hahn-Str. 6, 44227 Dortmund (Germany)
    Search for more papers by this author
  • Florian Kukolka,

    1. Fakultät Chemie, Biologisch-Chemische Mikrostrukturtechnik Technische Universität Dortmund Otto-Hahn-Str. 6, 44227 Dortmund (Germany)
    Search for more papers by this author
  • Christof M. Niemeyer,

    Corresponding author
    1. Fakultät Chemie, Biologisch-Chemische Mikrostrukturtechnik Technische Universität Dortmund Otto-Hahn-Str. 6, 44227 Dortmund (Germany)
    • Fakultät Chemie, Biologisch-Chemische Mikrostrukturtechnik Technische Universität Dortmund Otto-Hahn-Str. 6, 44227 Dortmund (Germany).
    Search for more papers by this author
  • Christoph Bräuchle,

    1. Department für Chemie und Biochemie and Center for Nanoscience (CeNS) Ludwig-Maximilians-Universität München Butenandtstrasse 11, 81377, Munich (Germany)
    2. Munich Center for Integrated Protein Science (CiPSM) Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, 81377 Munich (Germany)
    Search for more papers by this author
  • Don C. Lamb

    Corresponding author
    1. Department für Chemie und Biochemie and Center for Nanoscience (CeNS) Ludwig-Maximilians-Universität München Butenandtstrasse 11, 81377, Munich (Germany)
    2. Munich Center for Integrated Protein Science (CiPSM) Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, 81377 Munich (Germany)
    3. Department of Physics University of Illinois at Urbana-Champaign, 1110 W. Green Street, Urbana, IL 61801 (USA)
    • Department für Chemie und Biochemie and Center for Nanoscience (CeNS) Ludwig-Maximilians-Universität München Butenandtstrasse 11, 81377, Munich (Germany).
    Search for more papers by this author

Abstract

Due to the specificity of Watson–Crick base pairing, DNA is an excellent molecule for the fabrication of nanostructures. It has been shown that DNA can be used as a scaffold for positioning proteins and synthetic molecules with nanometer accuracy. As the next step in adding complexity and functionality to these nanodevices, optical addressability is incorporated. The fluorescent protein Dronpa, which can be optically switched between a fluorescent state and a dark state, is mounted on a DNA scaffold in the proximity of a synthetic fluorophore. Hence, the system can be optically switched between the dark state and an optically active state that undergoes Förster resonance energy transfer. As nanodevices operate as individual units, the functionality of the device is analyzed using single-molecule microscopy. The physical characteristics of nanodevices make them well suited as probes for investigating cellular processes or as shuttles for gene therapy. Hence, the functionality of the nanodevice is verified in the context of cellular measurements.

Ancillary